

Исследование вибрационного состояния технологического трубопровода

Студент: Швед Андрей Викторович, IV-33 Руководитель : Белов Иван Александрович, ст. преп.

Иваново, 2015

Цели и задачи

- Статический тепловой расчет конструкции
- Модальный анализ конструкции в «холодном» состоянии
- Модальный анализ конструкции в рабочем режиме
- Выбор датчика для натурных виброизмерений

Конечно-элементная модель

Рис. 2 Оболочечная модель трубопровода

Характеристики материала трубопровода и теплоносителя

Фазовое состояние	Насыщенная вода	
Относительная энтальпия	0	
Давление	18.14	бар
Температура	207.4949374200116	"C
Энтальпия	886.2159022372679	кДж / кг
Плотность	855.7596959575835	кг / м3

Рис. 3 Расчет физических характеристик теплоносителя в программе Parvo95

Температура °С	Модуль упругости, Па	Плотность, кг/м ³	Коэффициент Пуассона, µ	Коэффициент температурного расширения, α·10 ⁻⁵ , К ⁻¹
20	2,13·10 ¹¹	7859		_
100	2,03·10 ¹¹	7834	0.2	1,16
200	1,99·10 ¹¹	7803	0,3	1,26
300	1,9·10 ¹¹	7770		1,31

Таблица 1 Характеристики материала, сталь 20

Учет массы теплоносителя

$$m = \frac{\rho \cdot A \cdot l}{S} \quad (1)$$

Рис. 4 Сечение трубопровода с теплоносителем

№ Сечения элемента (Sections)	Диаметр и толщина стенки трубы, мм	Название элемента	Масса приходящаяся на 1 м ² элемента, кг
1	325x1.3	SHEL281	32.108
2	325x8	SHEL281	33.05
Π.Γ Ο 7			

Таблица 2 Добавочная масса в зависимости от сечения трубы

Моделирование опор

Рис. 5 Элемент LINK11

Рис. 7 Моделирование жесткой опоры

Рис. 6 Концентрация напряжений в месте прикрепления опоры, Па

Рис. 8 Фрагмент конечно-элементной модели в зоне прикрепления опоры

Граничные условия

Рис. 9 Схема нагружения при статическом анализе

Рис. 10 Граничные условия на окончание трубопровода

Перемещения

Максимальные напряжения

Рис. 12 Эпюра эквивалентных напряжений на опасном участке, Па

Модальный анализ «холодной» конструкции

- $[M]{\ddot{u}} + [K]{u} = {0} (2)$
 - $\{u\} = \{\varphi\}_i cos\omega_i t (3)$

- Уравнение свободных колебаний конструкции в матричной форме
- Вид решения уравнения (2)
- $(-\omega^2[M] + [K])\{\varphi\}_i = \{0\} (4)$
- Проблема собственных значений

Модальный анализ работающей конструкции

- $[K]_{C} = [K] + [K]_{g} (5)$
 - $[K]{u_0} = \{F\} (6)$
 - $[\sigma_0] \to [K]_g \ (7)$

 $(-\omega^2[M] + [K]_C)\{\varphi\}_i = \{0\} (8)$

- Матрица жесткости с учетом добавочной жесткости
- Уравнение при статическом анализе
- Вычисление геометрической матрицы жесткости
- Уравнение свободных колебаний с учетом добавленной жесткости

Результаты модального анализа «холодной»/нагруженной конструкции

Таблица 2 Собственные частоты для «холодной»/нагруженной конструкции

Номер собстве нной частот ы	Значение, Гц	Номер собственной частоты	Значение, Гц	Номер собственной частоты	Значение, Гц
1	0.26286/0.38656	11	3.2233/3.5825	21	5.9200/6.7233
2	0.40068/0.58131	12	3.2379/3.7315	22	6.4436/7.3127
3	1.3145/1.4873	13	3.2797/3.7619	23	6.7852/7.4684
4	1.5524/1.7308	14	3.4090/3.8062	24	6.9307/8.0030
5	1.6991/1.8804	15	4.0746/4.5346	25	7.5488/8.5521
6	1.9875/2.1967	16	4.3740/5.0186	26	7.7821/8.8431
7	2.0208/2.2985	17	4.9946/5.6601	27	8.4995/9.3340
8	2.2531/2.5791	18	5.2054/5.9769	28	8.8163/9.6632
9	2.4059/2.7719	19	5.5081/6.0864	29	10.001/11.356
10	2.8508/3.1435	20	5.7353/6.3493	30	11.026/12.464

Результаты модального анализа

- Значение собственной частоты работающей конструкции
- Значение собственной частоты
 "холодной" конструкции

Рис. 12 Гистограмма значений собственных частот для двух режимов

Учет преднапряженного состояния

Рис. 20 Различие между частотами для двух расчетных случаев

Расчетный случай 1	Расчетный случай 2
С учетом преднапряженного состояния	С учетом только температурных нагрузок и изменения плотности теплоносителя

Выбор датчика

$$a = (f \cdot 2\pi)^2 \cdot u \left[\frac{M}{c^2}\right](9)$$
$$a = (0.3866 \cdot 2\pi)^2 \cdot 10^{-3} = 5.9 \cdot 10^{-3} \left[\frac{M}{c^2}\right](10)$$

 Минимальные ускорения, возникающие при колебаниях конструкции на 1 собственной частоте и амплитуде колебаний 1 мм

$$a = (15 \cdot 2\pi)^2 \cdot 5 \cdot 10^{-2} = 444 \left[\frac{M}{c^2}\right] \approx 45g (11)$$

- Верхняя граница динамического диапазона

Рис. 21 Акселерометр 357B01, PCB

Таблица 4 Некоторые характеристики датчика

Характеристики	
Модель акселерометра	357B01
Чувствительность	100 пКл/g
Динамический диапазон	± 150 g(пик)
Частотный диапазон	3 кГц
Температурный диапазон	-71 до +288С
Масса	51 грамм

Выводы

- Разработана пространственная конечно-элементная модель, учитывающая параметры теплоносителя, жесткие и пружинные опоры.
- Произведен статический расчет конструкции, по результатом которого конструкция удовлетворяет требованиям прочности и не нуждается в оптимизации.
- Произведен расчет свободных колебаний трубопровода в «холодном» и горячем состоянии, проанализированы изменения собственных частот при работе в разных режимах
- Произведен сравнительный анализ учета преднапряженного состояния технологического объекта при модальном анализе конструкции
- На основе модального анализа, произведен выбор акселерометра для натурных виброизмерений