### Конечно - элементный анализ авиационных конструкций на основе сетчатых композитов

Выполнил: Шильцев Е.С. Руководитель: д. ф.- м. н., доц. Маслов Л.Б.

### Цели и задачи

Цель работы:

Разработка модели натурного отсека фюзеляжа самолета перспективной формы с использованием сетчатых композитов.

### Цели и задачи

Задачи:

- Изучение поведения сетчатых композитных конструкций при осевом сжатии.
- Параметрические исследования характеристик сетчатой конструкции оболочки отсека.
- Изучение конструкторской документации на натурный отсек фюзеляжа овального сечения.
- Разработка модели натурного отсека фюзеляжа с поперечным сечением в виде двух пересекающихся окружностей.
- Создание конечно- элементной модели натурного отсека.
- Изучение напряженно деформированного состояния.

### Сетчатые конструкции.



Рис.1. Схема расположения кольцевых ребер в сетчатой структуре

Рис.2. Геометрические параметры сетчатой оболочки



## Конечно – элементный анализ сетчатых композитных конструкций.



#### Типы элементов в ANSYS



Рис.3. Геометрия элемента SHELL281.



Рис.4. Геометрия элемента SOLID186.

#### Типы элементов в Siemens NX



Рис.6. Система координат элемента *Plate*.

# <sup>8</sup> Расчет фрагмента сетчатой композитной конструкции при статическом осевом нагружении.



Параметры модели:

- Шаг спиральной намотки а<sub>с</sub> = 62.8 мм
- •Шаг кольцевой намотки а<sub>к</sub> = 45 мм
- •Угол спиральной намотки  $\phi = 36^{\circ} 30'$
- •Толщина волокна спиральной намотки  $\delta_c = 2$  мм
- •Толщина волокна кольцевой намотки  $\delta_{\kappa} = 2$  мм



Рис.7. Ориентация слоев композита.

#### Таблица 1. Свойства материала.

| ЕХ,Па                  | ЕҮ,Па  | EZ,Πa  | PRXY | PRYZ | PRXZ | GXY,Па                | GYZ,Па                 | GXZ,Па   |
|------------------------|--------|--------|------|------|------|-----------------------|------------------------|----------|
| 1.6 <sup>.</sup> 10^11 | 8.10^9 | 8·10^9 | 0.25 | 0.3  | 0.25 | 4.8 <sup>.</sup> 10^9 | 3.08 <sup>.</sup> 10^9 | 4.8.10^9 |

#### Конечно- элементная модель конструкции.



Рис.8. Конечно – элементная модель расчетной конструкции.



Рис.9. наложенные граничные условия.

### Напряженно- деформированное состояние.



Рис.11. Картина распределения деформаций

.001014

.001419

.001825

### Параметрические исследования жесткостных характеристик сетчатой конструкции.

$$\Delta = 0.85 \frac{\Delta p^{P} \cdot R^{2}}{E \cdot \delta} = 0.85 \frac{0.12 \cdot 1820^{2}}{7.2 \cdot 10^{4} \cdot 1} = 4,7 \text{ MM}$$
(1)

I<sub>1</sub>- жесткость в направлении 1



11

#### Приведенная толщина по объему.



Рис. 14. Зависимость приведенной толщины по площади от высоты сечения сетки.

### Приведенная толщина по жесткости вдоль кольцевых ребер.

 $I_1 = I_{ob1} + I_A + I_B + (I_C + I_D) * \sin 34,2^{o}$ (6)



Рис. 15. Зависимость приведенной толщины по жесткости I1 от высоты сечения сетки

## Приведенная толщина по жесткости поперек <sup>14</sup> кольцевых ребер.

$$I_2 = I_{oo1} + (I_C + I_D) * \cos 34,2^{\circ}$$
 (9)



Рис. 16. Зависимость приведенной толщины по жесткости I2 от высоты сечения сетки.

## Разработка модели натурного отсека фюзеляжа <sup>15</sup> самолета.



### Поперечные сечения силовых элементов конструкции.



Рис.19. Поперечные сечения шангоутов.

Рис. 20. Поперечное сечение лонжерона

## Поперечные сечения силовых элементов конструкции.



Рис. 21. Поперечное сечение балок пола.





Рис. 22. Поперечное сечение стрингеров в проставках.

Рис. 23. Поперечное сечение спиральных и кольцевых ребер.

## Создание конечно- элементной модели натурного<sup>18</sup> отсека.



Рис.24.Конечно-элементная модель конструкции.

### Конечно- элементная модель.

б)



Рис.25.Сетчатая конструкция отсека.

a



### Граничные условия.



Рис.26.Граничные и силовые условия.

### Напряженно- деформированное состояние.

Escho Odin Razok : Solution 1 Результат Subcase - Static Loads 1, Статический шаг 1 Перемещение - По узпам, Величина Мин.: 0.000, Макс. :3.780. Единица = мм Деформация : Перемещение - По узлам Величина

Единицы = мм



#### Рис.28.Распределение напряжений (МПа).

#### Рис.27. Деформации модели (мм).

Escho Odin Razok: Solution 1 Результат Subcree - Static Loads 1, Cramewonki uar 1 Напряжение – По эломентам, Вон-Мизес Сечение оболокот: Следуу Мин.: 0.00, Макс.: 245.38. Единоцца = Німал 2(МПа) Деформация: Перелеціенна – По узпак Валичина





### Напряженно- деформированное состояние.



Единицы = Н/мм^2(МПа)

#### Рис.29. Напряжения в шпангоутах.(МПа)



#### Рис.30. Напряжения в лонжеронах.(МПа)

Единицы = Н/мм^2(МПа)

### Анализ результатов.

Таблица 2. Итоговые результаты.

| <del>о</del> в,<br>МПа | σ <sub>Max</sub> ,<br>M∏a | омахЛонж.,<br>МПа | σ <sub>MaxIIIп.</sub> ,<br>MПа | Δдоп.,<br>ММ | Δ,<br>mm | η    | ηЛонж | ηшπ. |
|------------------------|---------------------------|-------------------|--------------------------------|--------------|----------|------|-------|------|
| 450                    | 245                       | 103               | 241                            | 4,7          | 3,78     | 1,84 | 4,37  | 1,87 |