Министерство науки и высшего образования Российской Федерации «Ивановский государственный энергетический университет им. В. И. Ленина»

Кафедра теоретической и прикладной механики РАЗРАБОТКА СИСТЕМЫ ВИБРОМОНИТОРИНГА СОСТОЯНИЯ ПРОМЫШЛЕННЫХ РОТОРНЫХ МАШИН

Выполнил: студент группы 4-33 Чернов А.В.

Руководитель: доц., к. т. н. Колобов А. Б.

Иваново 2020

ЦЕЛЬ РАБОТЫ

Разработка методических, технических и организационных решений, дополняющих концепцию оценки технического состояния и имеющих практическое приложение при выполнении вибромониторинга роторных промышленных машин.

Апробация предлагаемых решений производилась применительно к электромеханическим центробежным машинам газовой котельной ИГЭУ, имеющим различные конструкции.

ЗАДАЧИ РАБОТЫ

- разработать структуру вибромониторинга центробежных роторных машин на основе нормативной концепции оценки технического состояния;
- разработать с использованием статистических моделей принципы установки ограничительных уровней ПРЕДУПРЕЖДЕНИЕ и ОСТАНОВ, как дополнение к методам ГОСТ ИСО 10816, и рассчитать уровни для каждой контролируемой машины;
- разработать методику количественной оценки запаса работоспособности, выполнить расчётную оценку запаса, проанализировать результаты и выдать рекомендации по техническому обслуживанию;
- разработать с использованием статистических моделей методику установки индивидуальных уровней границ зон состояний;
- разработать метод прогнозирования работоспособности на основе регрессионной модели, произвести оценку остаточного ресурса машин, проанализировать результаты.

АЛГОРИТМ ПРОВЕДЕНИЯ ВИБРОКОНТРОЛЯ

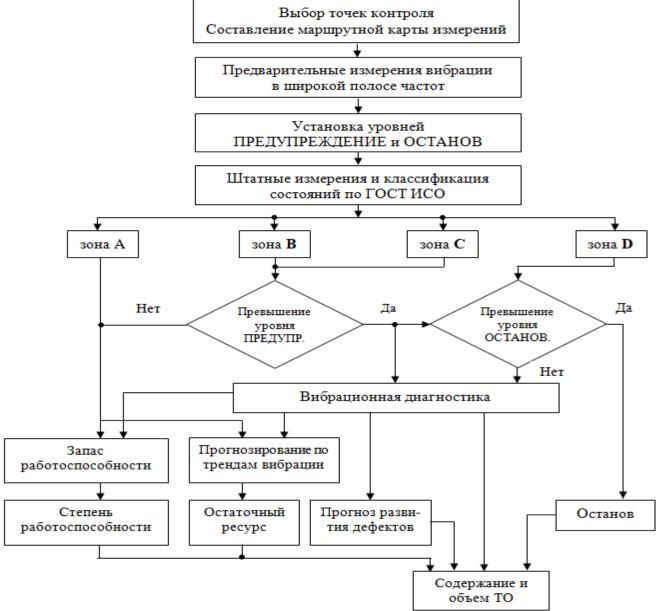


Рис. 1. Блок-схема вибрационного контроля состояния машин

ВНЕШНИЙ ВИД МАШИН

Рис. 2. Внешний вид тяго-дутьевого механизма (дымосос или дутьевой вентилятор)

Рис. 3. Внешний вид насоса сетевой воды

МАРШРУТНАЯ КАРТА И ТОЧКИ КОНТРОЛЯ

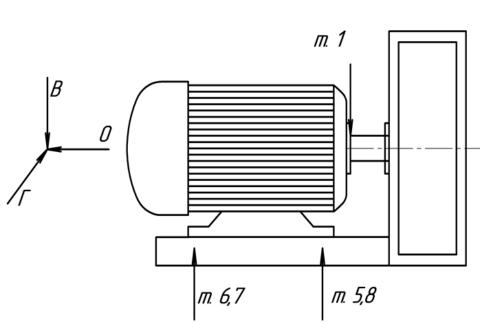
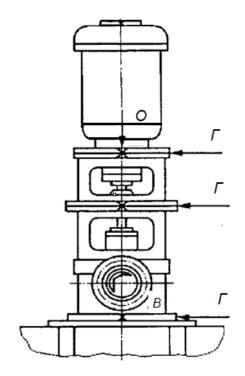



Рис. 4. Эскиз вентилятора дутьевого и дымососа

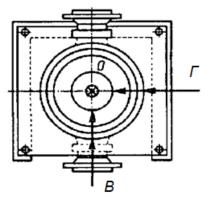


Рис. 5. Эскиз вертикального насоса

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И НОРМАТИВНЫЕ УРОВНИ

Таблица 1 – Технологическая группа сетевые насосы

Мощность	18,5 кВт			
Частота вращения ротора двигателя	3000 об∖мин			

Таблица 2 – Технологическая группа дымососы и дутьевые вентиляторы

Мощность	11 кВт
Частота вращения ротора двигателя	1000 об∖мин

Таблица 3 – Выбранные нормативные уровни СКЗ виброскорости

Технологическая	ГОСТ	Граница зон, мм/с		
группа		A/B	B/C	C/D
Сетевой насос	10816-3	1,4	2,8	4,5
Дутьевой вентилятор и дымосос	10816-1	0,71	1,8	4,5

ОПРЕДЕЛЕНИЕ УРОВНЯ ПРЕДУПРЕЖДЕНИЕ

Оценка среднего значения СКЗ виброскорости $\tilde{V}_{e0\,i}$ (оценка базового уровня)

$$\tilde{V}_{e0j} = \frac{1}{n} \sum_{i=1}^{n} V e_{ji} \tag{1}$$

где i = 1,2,...,n – количество измерений; j = 1,2,...,m – количество точек контроля; Ve — измеренное значение вибрации в i-ой точке и j-том направлении.

Оценка среднего квадратичного отклонения (СКО) среднего значения СКЗ виброскорости (базового уровня)

$$\tilde{S}_{Ve0j} = \sqrt{\frac{\sum_{i=1}^{n} (Ve_{ji} - \tilde{V}_{e0j})^2}{n-1}}$$
 (2)

где i = 1,2,...,n – количество измерений; j = 1,2,...,m – количество точек контроля; Ve — измеренное значение вибрации в i-ой точке и j-том направлении.

$$V_{e0j} = \tilde{V}_{e0j} \pm t \cdot S_{Ve0j} \,, \tag{3}$$

где t — коэффициент доверительной вероятности для заданной P и числа измерений n; S_{Ve0j} — СКО оценки среднего значения СКЗ виброскорости (базового уровня), которая определяется

$$S_{Ve0j} = \frac{\tilde{S}_{Ve0j}}{\sqrt{n}}. (4)$$

ОПРЕДЕЛЕНИЕ УРОВНЯ ПРЕДУПРЕЖДЕНИЕ

Поскольку ГОСТ ИСО 10816 допускает гибкую установку уровня ПРЕДУПРЕЖДЕНИЕ, в зависимости от величины V_{e0j} , то в работе предложен следующий принцип установки уровня ПРЕДУПРЕЖДЕНИЕ.

Если расчётная по (1) оценка \tilde{V}_{e0j} близка к границе $Ve^{A/B}$, то уровень ПРЕДУПРЕЖДЕНИЕ устанавливается по нижней границе доверительного интервала (3) по выражению (5), в остальных случаях — по верхней.

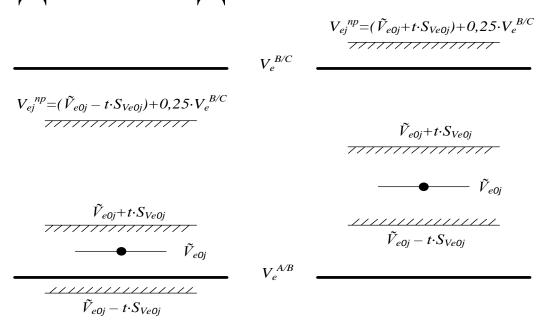


Рис. 6. Принцип установки уровня ПРЕДУПРЕЖДЕНИЕ: а – при значении оценки близком к границе зон **A/B** б – при значении оценки превышающем более чем на 25% от границы зон **A/B**

o inpir sha telihir oqenkir inpebbilimatoiqeix oosiee telih na 25 /v or rpaninqui son 12/2

$$V_{ej}^{\text{np}} = (\tilde{V}_{e0j} \pm t \cdot S_{Ve0j}) + 0.25 \cdot Ve^{B/C}$$
(5)

где $Ve^{B/C}$ – граница зон состояний **В** и **С** по ГОСТ ИСО 10816.

При окончательном выборе уровня ПРЕДУПРЕЖДЕНИЕ рекомендовано учитывать соотношения расчётного значения $V_{ej}^{\ \ np}$ с границами зон состояния.

РЕЗУЛЬТАТЫ РАСЧЕТОВ УРОВНЕЙ

Таблица 4 – Расчет уровней для сетевого насоса 1 (СН-1)

Точка	Направ	Оценки базового уровня, мм/с		доверит	ницы гельного ала, мм/с	Уровень ПРЕДУПРЕ ЖДЕНИЕ,	Уров ОСТА мм	нов,
	ление	\widetilde{V}_{e0j}	\tilde{S}_{Ve0j}	Нижня я	Верхняя	мм/с	Мягки й	Жест кий
	В	1,45	0,131	1,341	1,559	2,041		
1	Γ	2,112	0,391	1,786	2,439	$3,14 \rightarrow 3,5$		
	0	1,5	0,076	1,437	1,563	2,137		
	В	1,025	0,104	0,939	1,111	1,639		
2	Γ	1,212	0,099	1,13	1,295	1,83	4,05	5,625
	O	0,738	0,052	0,649	0,781	$1,39 \rightarrow 1,4$		
	Γ	1,162	0,052	1,119	1,206	1,819		
3	0	0,713	0,113	0,619	0,806	1,32 →.1,4		

Примечание: P = 0.95; n = 8; t = 2.36

Стрелка обозначает, что принимается значение равное:

КОЛИЧЕСТВЕННАЯ ОЦЕНКА ЗАПАСА РАБОТОСПОСОБНОСТИ

$$C_{B/C} = \frac{Ve^{B/C} - Vej(t_8)}{1,25Ve^{C/D} - min(V_{ej})} \cdot 100\%$$
 (6)

$$C_{C/D} = \frac{Ve^{C/D} - Vej(t_8)}{1,25Ve^{C/D} - min(V_{ej})} \cdot 100\%$$
 (7)

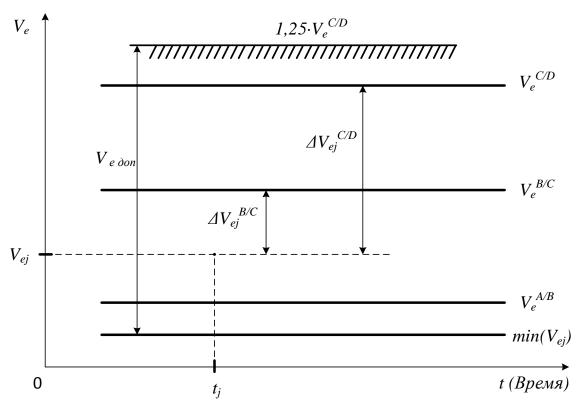


Рис. 7. Принцип определения запаса работоспособности для границ зон В/С и С/Л

РЕЗУЛЬТАТЫ КОЛИЧЕСТВЕННОЙ ОШЕНКИ

ОЦЕНКИ Таблица 5 – Запас работоспособности сетевого насоса 2 (СН-2)

Точка	Направление	До границы зон В/С	До границы зон C/D		
	D.	24,8	67,1		
	В	·	·		
1	Γ	20,4	63,7		
	0	18,8	64,4		
	В	30,9	68,5		
2	Γ	28,4	68,6		
	0	34,6	71,4		
3	Γ	33,9	72,3		
3	0	35,4	72,9		

Таблица 6 – Запас работоспособности сетевого насоса 3 (СН-3)

Точка	Направление	До границы зон В/С	До границы зон C/D
	В	24,4	69,8
1	Γ	15	66,2
	0	29,8	72
	В	38,9	75,7
2	Γ	36,2	74,6
	0	33,9	69,8
3	Γ	40,2	76,2
3	0	38,9	75,7

РАСЧЁТ ИНДИВИДУАЛЬНЫХ УРОВНЕЙ ГРАНИЦ ЗОН

В работе предложена модель выбора критериев оценки технического состояния (границ зон состояний) на основе расчетных среднестатистических величин вибрации машин находящихся в работоспособном состоянии («средняя нормаль»). При выборе границ зон состояний предлагается руководствоваться следующим.

- 1. Как и в базовом ГОСТ ИСО 10816-1-97, величины СКЗ виброскорости, разделяющие выбранные уровни состояния, должны отличаться не менее чем в 1,6 раза, но не более чем в $1,6^2 = 2,56$ раза.
- 2. В основе модели лежит предположение, основанное на мнении эксплуатационного персонала (экспертное заключение), что конкретная машина находится в состоянии **В** (пригодна для длительной эксплуатации и отсутствуют отклонения рабочих параметров). Поэтому определяемая статистически «средняя нормаль» работоспособного состояния будет определять граничное значение зон **В/С**, которая в *1,6* раза будет выше расчетного уровня «средняя нормаль». Соответственно, границы других зон технического состояния определяются по условиям:
- граница зон **A/B** равна расчетному уровню «средняя нормаль»; граница зон **C/D** в 2,56 раза выше расчетного уровня «средняя нормаль».

$$(\tilde{V}_{e0j} - 3\,\tilde{S}_{Ve0j};\,\tilde{V}_{e0j} + 3\tilde{S}_{Ve0j}),$$
 (8)

где \tilde{V}_{e0j} — оценка среднего значения СКЗ виброскорости (оценка базового уровня), рассчитанная по (1); \tilde{S}_{Ve0j} — оценка СКО среднего значения СКЗ виброскорости (базового уровня), рассчитанная по (2).

РЕЗУЛЬТАТЫ РАСЧЁТА ИНДИВИДУАЛЬНЫХ

Таблица 7 – Рекомендуемые индивидуальные уровни границ зон A/B, B/C и C/D механизмов

котельной]	игэу д	для точеі	к контро	ЛЯ						-
		СКЗ виброскорости, мм/с								
Граница зон состоя	ний		Контро	ольные т	гочки/Н	аправле	ния изм	ерения		
механизмов		1			2		3		1	
		В	Γ	0	В	Γ	0	Γ	0]
Сетевой насос 1	A/B	1,4	1,4	1,4	0,71	1,12	0,71	1,12	0,71	
	B/C	2,3	2,8	2,3	1,4	1,8	1,12	1,8	1,12	
(CH1)	C/D	3,5	4,5	3,5	2,3	2,8	1,8	2,8	1,8	
C2 2	A/B	1,4	1,4	1,4	1,12	1,4	1,12	1,12	1,12	1
Сетевой насос 2	B/C	2,8	2,8	2,8	1,8	2,3	1,8	1,8	1,8	1
(CH2)	C/D	4,5	4,5	4,5	2,8	3,5	2,8	2,8	2,8	1
C2	A/B	1,4	1,4	1,4	1,12	1,4	1,12	0,71	1,12	1
Сетевой насос 3	B/C	2,8	2,8	2,3	1,76	2,3	1,8	1,4	1,8	1
(CH3)	C/D	4,5	4,5	3,5	2,8	3,5	2,8	2,3	2,8	1
C 4	A/B	1,4	1,4	1,12	1,12	1,12	1,12	0,71	0,71	1
Сетевой насос 4	B/C	2,3	2,3	1,8	1,8	1,8	1,8	1,4	1,4	1
(CH4)	C/D	3,5	3,5	2,8	2,8	2,8	2,8	2,3	2,3	1
П	A/B	0,71	0,71	-	-	-	-	-	-	1
Дымосос 2 (Д2)	B/C	1,12	1,4	-	-	-	-	-	-	1
	C/D	1,8	2,3	-	-	-	-	-	-	1
Дутьевой вентилятор	A/B	-	0,71	-	-	-	-	-	-	
2	B/C	-	1,8	-	-	-	-	-	-	
(ДВ2)	C/D	-	4,5	-	-	-	-	-	-	1

МОДЕЛИ ПРОГНОЗИРОВАНИЯ

Тренд изменения СКЗ виброскорости представляется в виде линейной регрессии (рис. 8), параметры которой определяются статистически:

$$V_e(t) = V_{e \, cp} + b \cdot (t_i - t_{cp}), \tag{9}$$

Для учета возможного случайного отклонения СКЗ виброскорости устанавливается верхняя доверительная граница тренда, описываемая функцией

$$V_e^B(t) = V_e(t) + \sigma_V \cdot t(p), \tag{10}$$

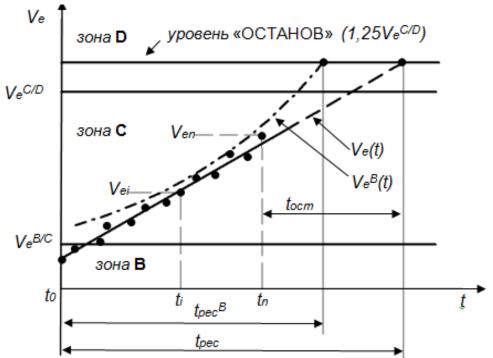


Рис. 8. Линия регрессии и определение остаточного ресурса

ПРИНЦИП РАСЧЁТА ОСТАТОЧНОГО РЕСУРСА МАШИНЫ

Общий ресурс машины по тренду регрессии определяется следующим образом:

- для линейной модели

$$V_{e \text{ nop}} = V_{e \text{ cp}} + b \cdot (t_{\text{pec}} - t_{\text{cp}})$$

$$t_{\text{pec}} = \frac{V_{e \text{ nop}} - V_{e \text{ cp}} + b \cdot t_{\text{cp}}}{b}, \qquad (11)$$

где $V_{e \text{ пор}}$ – пороговое значение вибрации; t_{pec} – общий ресурс машины.

- для нелинейной модели

$$V_{e \text{ nop}} = A + B \cdot (t_{\text{pec}} - t_{\text{cp}}) + C \cdot (t_{\text{pec}} - t_{\text{cp}})^{2}$$

$$V_{e \text{ nop}} = A - B \cdot t_{\text{cp}} + C \cdot t_{\text{cp}}^{2} + t_{\text{pec}} \cdot (B + C \cdot t_{\text{pec}} - 2 \cdot C \cdot t_{\text{cp}})$$
(12)

где $V_{e\,\mathrm{nop}}$ — пороговое значение вибрации; t_{pec} — общий ресурс машины;

А, В, С – неизвестные константы нелинейной регрессионной модели.

ПРИНЦИП РАСЧЁТА ОСТАТОЧНОГО РЕСУРСА МАШИНЫ

Общий ресурс машины по верхней границе регрессии определяется следующим образом:

- для линейной модели

$$V_e^B(t) = V_e(t) + \sigma_V \cdot t(p)$$
, где $V_e(t) = V_{e \text{ cp}} + b \cdot (t_{\text{pec}} - t_{\text{cp}})$ Поскольку $V_e^B(t) = V_{e \text{ пор}} = const.$, получаем следующее выражение

$$V_{e \text{ nop}} = V_{e \text{ cp}} + b(t_{\text{pec}} - t_{\text{cp}}) + \sigma \sqrt{1 + \frac{1}{n} + \frac{(t_{\text{pec}} - t_{\text{cp}})^2}{\sum_{i=0}^{n} (t_{\text{pec}i} - t_{\text{cp}})^2}}$$
(13)

- для нелинейной модели

$$V_e^B(t) = V_e(t) + \sigma_V \cdot t(p)$$
, где $V_e(t) = A + B \cdot (t_{\rm pec} - t_{\rm cp}) + C \cdot (t_{\rm pec} - t_{\rm cp})^2$ Поскольку $V_e^B(t) = V_{e \, \rm nop} = const.$, получаем следующее выражение

$$V_{e \text{ nop}} = A + B(t_{\text{pec}} - t_{\text{cp}}) + C(t_{\text{pec}} - t_{\text{cp}})^{2} + \sigma \sqrt{1 + \frac{1}{n} + \frac{(t_{\text{pec}} - t_{\text{cp}})^{2}}{\sum_{i=0}^{n} (t_{\text{pec}i} - t_{\text{cp}})^{2}}}$$
(14)

Остаточный ресурс машины:

$$t_{\text{oct}} = t_{\text{pec}} - t_n$$

РЕЗУЛЬТАТЫ РАСЧЁТА ОСТАТОЧНОГО РЕСУРСА МАШИНЫ

Таблица 8 – Оценка ресурсных показателей сетевого насоса 4 (точка 1, осевое направление)

	Л	Іинейна	я модел	Ь	Нелинейная модель			
Границы зон	По тренду регрессии		По верхней границе регрессии		По тренду регрессии		По верхней границе регрессии	
	tpec	tост	tpec	tост	tpec	tост	tpec	tост
До границы зон В/С (по ГОСТ)	1531	1075	1400	944	671	215	659	203
До границы зон С/D (по ГОСТ)	2959	2503	2828	2372	867	411	859	403
До границы зон В/С (по данным)	690	234	560	104	508	52	489	33
До границы зон С/D (по данным)	1531	1075	1400	944	672	216	659	203

Примечание: 456 дней – интервал с первого до последнего измерения

ЗАКЛЮЧЕНИЕ

В ходе работы разработаны методические и технические решения дополняющие концепцию оценки технического состояния и имеющие практическое приложение, при выполнении вибромониторинга роторных промышленных машин. Апробация предлагаемых решений производилась применительно к электромеханическим центробежным роторным машинам ИГЭУ.

Решены следующие задачи:

- разработана структура выполнения вибромониторинга центробежных роторных машин на основе нормативных документов;
- разработана методика количественной оценки запаса работоспособности и выполнена расчётная оценка запаса, проанализированы результаты и выданы рекомендации по ТО контролируемых машин;
- разработана модель прогнозирования работоспособности на основе метода регрессионного анализа, проведена оценка остаточного ресурса ряда контролируемых машин и проанализированы результаты.

Разработанные методы установки ограничительного уровня ПРЕДУПРЕЖДЕНИЕ и выбора индивидуальных границ зон состояний могут быть рекомендованы для вибромониторинга и организации технического сервиса механизмов на различных предприятиях, в частности, механизмов собственных нужд котло-турбинных цехов ТЭЦ Владимирского филиала ПАО «Т Плюс» и других генерирующих компаний РФ