МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Ивановский государственный энергетический университет имени В.И. Ленина»

Кафедра теоретической и прикладной механики

МОДЕЛИРОВАНИЕ КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ ТВЕРДОГО ТЕЛА С ГИПЕРУПРУГОЙ НЕРЕГУЛЯРНОЙ ПОВЕРХНОСТЬЮ В ПРОГРАММНОМ КОМПЛЕКСЕ ABAQUS

Выполнила: студентка группы 2-33м, Губина Анна Андреевна Научный руководитель: доцент кафедры ТиПМ, к.т.н., доц., Шилов Михаил Александрович

Объект исследования

Гиперупругая нерегулярная поверхность эластомерного материала.

Предмет исследования Контакт твердого тела с гиперупругой нерегулярной поверхностью эластомера.

Цель работы

Разработать модель, позволяющую описывать контактное взаимодействие твёрдого тела с нерегулярной гиперупругой поверхностью.

Задачи работы

- 1. Синтезировать резины на основе каучуков СКИ-3 и СКМС-30-АРКМ-15;
- 2. Выполнить цикл механических испытаний эластомерных образцов;
- 3. Разработать конечно-элементную модель контактного взаимодействия твердого тела с гиперупругой нерегулярной поверхностью в программном комплексе Abaqus.

Структура выпускной квалификационной работы

2. Синтез резины на основе каучуков СКИ-3 и СКМС-30-АРКМ-15

1. Аналитический обзор

 4. Моделирование контакта эластомерного образца с аналитической поверхностью при одноосном сжатии

Экспериментальное
определение механических
характеристик
эластомерных материалов
при одноосном растяжении

Заключение

1. Аналитический обзор

Рис. 1. Кривая эластичности эластомеров

Эластомеры обладают характерным свойством высокоэластичности, то есть материал способен к большим обратимым деформациям при низком значении модуля упругости (около 1–3 МПа). Это обусловлено химическим строением молекул эластомеров.

Кривая «напряжение – деформация» с «распутыванием» клубков молекул эластомеров имеет **нелинейный характер**. Это приводит к **необратимым деформациям** (рис. 1).

Рис. 2. Иерархия моделей гиперупругих материалов

Переход от выражения полиномиальной модели к модели Муни-Ривлина с параметром N=1:

Рис. 3. Диапазон применения моделей гиперупругих материалов: а) модели с деформацией до 1000 %, б) модели с деформациями до 100%

2. Синтез резины на основе каучуков СКИ-3 и СКМС-30-АРКМ-15

• Методику получения резиновых образцов для испытаний можно представить в виде этапов:

 Расчет рецептуры резиновых смесей, подготовка ингредиентов 2.Приготовление навесок

5. Определение оптимума вулканизации, вулканизация резиновой смеси

6. Вырубка образцов

ов 7. Готовые образцы

4. Листование

7

3.Экспериментальное определение механических характеристик эластомерных материалов при

одноосном растяжении

Методы исследования

Рис. 4. Разрывная машина Sumadzu, серии AG-X

Рис. 5. Геометрия гантели

Табл. 1. Геометрические параметры резиновых образцов в соответствии с DIN 53504 и ГОСТ 270-75

Параметр

Общая длина I, мм

Длина шейки I_s, мм Ширина шейки b, мм

Внутренний радиус

перехода r₁, мм Внешний радиус

перехода r₂, мм Толщина а, мм

Исходная длина

образца I₀, мм

Ширина головки

гантели b_k, мм

Гантель

S2

75

12,5

25

4

12,5

8

2±0,2

20

8

Рис. 6. Пример диаграмм растяжения каучука СКИ-3

 ε_E – упругая деформация.

деформации, м;

где:

L

 Δu - изменение длины образца при

L - длина образца после деформации, м; *L0* - длина образца до деформации, м;

$$\lambda = \frac{L}{L_0} = \frac{L_0 + \Delta u}{L_0} = 1 + \varepsilon_E, \quad (2)$$

Относительное удлинение образца:

Результаты экспериментальных испытаний эластомеров при одноосном сжатии и растяжении

9

Моделирование гиперупругих характеристик эластомерных материалов в Abaqus

Рис. 7. Графики напряженно-деформированного состояния гиперупругого материала, полученные на основе экспериментальных 10 данных (х→х), модели Муни-Ривлина (□---□), полиномиальной модели с N = 1 (□----□), модели Огдена (□----□)

Рис. 8. Схема методики валидации гиперэластичных моделей

Для описания потенциала плотности деформации используют три инварианта деформации:

$$I_1 = \lambda_1^2 + \lambda_2^2 + \lambda_3^2,$$

$$I_2 = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3, \tag{3}$$

 $I_3 = \lambda_1^2 \lambda_2^2 \lambda_3^2$ (для несжимаемых материалов $I_3 = 1$)

• Для вычисления напряжений Пиола-Киргофа II рода используют формулу:

 $S_{ij} = \frac{\partial W}{\partial \varepsilon_{ij}}$ (4), где S_{ij} – тензор напряжений Пиола-Киргофа, W – потенциал энергии деформации, ε_{ij} – тензор деформации Грина-Лагранжа.

• Связь полной, тепловой и эластичной объемной деформации имеет вид:

$$J_{el} = J = \frac{J_{total}}{J_{th}}$$
 (5), где J_{el} – эластичная объемная деформация, J_{total} – полная объемная деформация

 $J_{th} = (1 + \varepsilon_{th})^3$ (6) - объемная тепловая деформация, ε_{th} - тепловая деформация, th - перенос тепла (heat transfer)

Относительное изменение объема, выраженное через главные относительные удлинения, имеет вид:

$$J = rac{V}{V_0} = \lambda_1 \lambda_2 \lambda_3$$
 (7), где V_0 – начальный объем эластомера, м³, V – конечный объем эластомера, м³

Экспериментальное определение шероховатости поверхности эластомера

Рис. 9. Сканирующий зондовый микроскоп НАНОЭДЬЮКАТОР II

Рис. 10. Пример полученной шероховатости на виде сверху и в 3D

На основании полученных результатов было определено, что параметр шероховатости Rz находится в интервале от 10 мкм до 50 мкм.

4. Моделирование контакта эластомерного образца с аналитической поверхностью при одноосном сжатии Постановка задачи

Рассматривается контактная задача об одноосном сжатии абсолютно жесткого штампа и гиперупругого основания двух типов: с регулярной (рис. 11) и нерегулярной (рис. 12) поверхностью.

Рис. 11. Модель контакта жесткого штампа с гиперупругой регулярной поверхностью

14

Рис. 12. Модель контакта жесткого штампа с гиперупругой нерегулярной поверхностью

Краевые условия по перемещениям

Открытое множество S \subset XOY - внутренняя область контакта, т.е. $S = \{(x, y) | \sigma_z(x, y, 0) \neq 0\}$. Учитывая, что в области контакта $\sigma_z(x, y, 0) \neq 0$ возникают только в точках, где ($u_z(x, y, 0) \neq 0$), то функцию внутри области контакта можно определить как

$$S = \{(x, y) | u_z(x, y, 0) \neq 0\}.$$
 (8)

Форма недеформируемого штампа описывается гладкой функцией f(x, y). Точка (0,0,0) - начальная точка касания штампа с плоскостью XOY. В итоге краевые условия по перемещениям имеют вид:

$$u_{z}(x, y, 0) = \begin{cases} f(x, y) + \delta, & (x, y) \in \bar{S} \\ 0, & (x, y) \notin \bar{S} \end{cases}$$
(9)

где δ – глубина максимального вдавливания штампа, $ar{S}$ - область контакта.

Регулярность гиперупругой поверхности определяется синусоидальной функцией вида:

$$u_z(x, y, 0) = \delta + \frac{A}{4} \left(\cos\left(\frac{2\pi x}{l}\right) - 1 \right) \left(\cos\left(\frac{2\pi y}{l}\right) - 1 \right), \quad (10)$$

где *А* – высота функции поверхности, *l* период функции основания.

Область контакта штампа с основанием:

 $w(x,y) = D + f(x,y), (x,y) \in \Omega,$ (11), где D – сближение тел за счёт деформирования.

Условие периодичности на распределение контактного давления p(x,y):

$$p(x, y) = p(x + nl_1, y + ml_2); \quad m = 1, 2, ..., \infty; \quad n = 1, 2, ..., \infty.$$
(12)

Тангенциальные напряжения отсутствуют, нормальные удовлетворяют условию:

 $p(x,y) = 0, \quad (x,y) \notin \Omega. \tag{13}$

На границе области выполняется граничное условие:

$$p(x,y)\Big|_{\Gamma_{\Omega}} = 0.$$
 (14)

Контактные давления удовлетворяют условию равновесия:

 $\iint_{\Omega} p(x, y) dx dy = P$, (15), где P — нормальная нагрузка, действующая на вершину единичного выступа.

Конечно-элементная модель реальной контактной поверхности эластомера

Граничные условия:

- 1) Закрепление ENCASTRE жёсткое закрепление по всем направлениям для точек основания модели (рис. 13);
- 2) Нормальная сила на поверхность равная 60 Н.

Рис. 13. Жесткое закрепление основания

Рис. 14. Конечно-элементная сетка

Количество элементов сетки: 63586;

Тип элемента: C3D8H — восьмиузловой шестигранный конечный элемент сплошной среды в смешанной постановке с линейной функцией формы и равномерным распределением давления (одна дополнительная переменная) в пределах элемента.

Результаты расчетов

Рис. 15. Контактное давление (CPRESS, МПа) и площадь контакта (CNAREA, мкм2) для трех регулярных поверхностей с разными амплитудами шероховатости соответственно

Рис. 16. Контактное давление (CPRESS, МПа) и площадь контакта (CNAREA, мкм2) для трех разных областей нерегулярной поверхности соответственно

Рис. 17. Сравнение зависимости отношения фактической (А) и номинальной (Аа) площадей контакта от действующей нормальной силы от 0 до 60 Н для трех нерегулярных поверхностей (irregular) и их регулярных аналогов (sin)

A/Aa (%)		
Модель	Sin (регулярный аналог)	Irregular (нерегулярная поверхность)
1	7,586	8,135
2	5,734	5,994
3	6,009	12,375

Табл. З. Зависимость между фактической (А) и номинальной (Аа) площадями контакта при нормальной нагрузке в 60 Н для трех нерегулярных поверхностей и их регулярных аналогов

Заключение

- 1. Синтезированы резины на основе каучуков СКИ-3 и СКМС-30-АРКМ-15;
- Экспериментально определены механические характеристики эластомерных материалов при одноосном растяжении и сжатии, обозначены используемые материалы и их свойства, методы их исследования. Остаточных деформаций не наблюдали, поэтому материалы охарактеризовали как гиперупругие;
- Полученные данные эксперимента использованы для получения характеристик моделей гиперупругих материалов в программном комплексе Abaqus. Определено, что поведение исследованных каучуков СКМС-30-АРКМ-15 и СКИ-3 лучше всего описывает модель Муни-Ривлина с параметром N = 1.

Разработана конечно-элементная модель контактного взаимодействия твердого тела с гиперупругой нерегулярной поверхностью в программном комплексе Abaqus. Результаты моделирования показали существенное влияние выбора волнистости при создании регулярной поверхности на фактическую площадь контакта.