МИНОБРНАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ивановский государственный энергетический университет им. В.И. Ленина»

Кафедра теоретической и прикладной механики

Моделирование разрушения болтового соединения при сдвиге

Выполнил: студент гр. 4-33 Чекурда В.В.

Руководитель: к.т.н., доц. Шилов М.А

Описание объекта

Крепежная деталь – винт, гайка, болт или шпилька с внешней или внутренней резьбой (рис. 1)

Рис.1. Болтовое соединение: 1 - болт; 2 - резьба; 3 - гайка

Рис.2. Разрушение болта

Рис.3. Разрушение резьбы

Цель и задачи работы

Цель работы: определение характеристик разрушения зубьев болтового соединения, работающего на сдвиг.

Задачи:

- проведение литературного обзора;
- экспериментальное определение нагрузок, приводящих к разрушению резьбы материала гайки;
- разработка конечно-элементной модели разрушения болтового соединения в программном комплексе Simulia Abaqus.

Экспериментальные испытания образцов на разрушение

В эксперименте испытываются 3 пары болтовых соединений с диаметром резьбы M8x1,25 (рис. 4-5): Физико-механические свойства этих материалов представлены в таблице 1. 1 2

Гайки высотой 6,8 мм и диаметром резьбы M8x1,25 сделаны из прутка по специальному заказу.

Рис.5. Гайки: 1 – алюминиевая (Д16Т); 2 – нержавеющая сталь (12Х18Н10Т); 3 – бронза железистая (БрАЖ9-4)

Таблица 1. Физико-механические свойства материалов *

Наименование материала	Плотность,	Модуль	Коэффициент	Предел прочности,
	кг/м ³	упругости, ГПа	Пуассона	МПа
Стальной болт 10.9	7800	200	0,3	1040
Стальной болт 12.9	7850	200	0,3	1220
Алюминиевая гайка (Д16Т)	2770	67,7	0,33	431,5
Гайка из нержавеющей стали	7920	205	0,3	900
(12X18H10T)				
Бронзовая гайка (БрАЖ9-4)	7500	116	0,35	540

Рис.4. Болты классов прочности: 1 – 12,9; 2 – 10,9 (ГОСТ ISO 898-1-2014)

* Альтман М.Б, Амбарцумян С.М., Аристова Н.А. и др. Алюминиевые сплавы. Промышленные деформируемые, спеченные и литейные алюминиевые сплавы. Справочное руководство. – М.: Металлургия, 1972. – 552 с.
Анурьев В.И. Справочник конструктора-машиностроителя: в 3-х т. Т. 1. – 9-е изд., перераб. и доп. / под ред. Жестковой. – М.: Машиностроение, 2006. – 928 с.
Зубченко А.С., Колосков М.М., Каширский Ю.В. и др. Марочник сталей и сплавов. 2-е изд., доп. и испр. / под общей ред. Зубченко А.С. – М.: Машиностроение, 2003. – 784 с., ил.

зуоченко А.С., Колосков М.М., Каширскии Ю.В. и др. Марочник сталей и сплавов. 2-е изд., доп. и испр. / под оощеи ред. Зуоченко А.С. – М.: Машиностроение, 2003. – /84 с., ил. – То страна и сплавов. 2-е изд., доп. и испр. / под оощеи ред. Зуоченко А.С. – М.: Машиностроение, 2003. – /84 с., ил. – То страна и сплавов. 2-е изд., доп. и испр. / под оощеи ред. Зуоченко А.С. – М.: Машиностроение, 2003. – /84 с., ил. – То страна и сплавов. 2-е изд., доп. и испр. / под оощеи ред. Зуоченко А.С. – М.: Машиностроение, 2003. – /84 с., ил. – То страна и сплавов. 2-е изд., доп. и испр. / под оощеи ред. Зуоченко А.С. – М.: Машиностроение, 2003. – /84 с., ил. – То страна и сплавов. 2-е изд., доп. и испр. / под оощеи ред. Зуоченко А.С. – М.: Машиностроение, 2003. – /84 с., ил. – То страна и сплавов. 2-е изд., доп. и испр. / под оощеи ред. Зуоченко А.С. – М.: Машиностроение, 2003. – /84 с., ил. – то страна и сплавов. 2-е изд., доп. и испр. / под оощеи ред. Зуоченко А.С. – М.: Машиностроение, 2003. – /84 с., ил. – то страна и сплавов. 2-е изд., доп. и испр. / под оощеи ред. Зуоченко А.С. – М.: Машиностроение, 2003. – /84 с., ил. – то страна и сплавов. 2-е изд., доп. и испр. / под оощеи ред. Зуоченко А.С. – М.: Машиностроение, 2003. – /84 с., ил. – то страна и сплавов. – то страна и испр. / под оощеи ред. Зуоченко А.С. – М.: Кашиностроение, 2003. – /84 с., ил. – то страна и испр. / под оощеи ред. Зуоченко А.С. – М.: Кашиностроение, 2003. – /84 с., ил. – то страна и испр. – то страна

Экспериментальные испытания образцов на разрушение*

Эксперимент проводится на универсальной испытательной машине (разрывной машине) УТС-111.2-50-22 (рис.6).

Методика определения диаграммы растяжения и параметров разрушения Механические испытания на растяжение по ГОСТ 1497.

Рис.7. Установка болтового соединения в захваты

Экспериментальные данные получены на оборудовании и с помощью ООО «Testsystems»

Рис.6. Разрывная машина: 1 – пульт управления; 2 – захваты; 3 – подвижная траверса

Экспериментальные испытания образцов на разрушение

Результаты эксперимента

Для каждой пары было произведено 5 испытаний на растяжение, в ходе которых были получены графики разрушения резьбы. В качестве примера на рис. 8-9 изображено растяжение гайки из нержавеющей стали и болта класса прочности 10.9.

Экспериментальные испытания образцов на разрушение

Результаты эксперимента

Таблица 2. Максимальные разрывные усилия в каждом из испытаний

Материал гайки	Алюминиевая гайка (Д16Т)	Гайка из нержавеющей стали	Бронзовая гайка (БрАЖ9-4)
		(12X18H10T)	
1 образец	25921 Н	42144 H	35361 H
2 образец	26848 H	41760 H	35757 H
3 образец	26834 H	41150 H	35930 H
4 образец	26970 H	41682 H	34810 H
5 образец	27158 H	40329 H	35528 H

Рис.10. Разрушение алюминиевой гайки

Рис.11. Разрушение гайки из бронзы железистой

Рис.12. Разрушение гайки из нержавеющей стали

Разрушение металлов в Simulia Abaqus

Рис. 13 Диаграмма деформирования пластичного металла. σ_{y0} - предел текучести;

 $\bar{\varepsilon}_{0}^{pl}$ - эквивалентная пластическая деформация в начале разрушения;

 $\bar{\varepsilon}_{f}^{pl}$ - эквивалентная пластическая деформация при разрушении.

D – общая переменная повреждения; σ – эффективный (или неповрежденный) тензор напряжений, вычисленный в текущем приращении. σ – это напряжения, которые бы существовали в материале при отсутствии повреждений.

Разрушение металлов в Simulia Abaqus

Критерии инициации повреждений при разрушении металлов

Ductile Damage (критерий пластичности)

$$\omega_{D} = \int \frac{d\bar{\varepsilon}^{pl}}{\bar{\varepsilon}^{pl}_{D}(\eta, \dot{\varepsilon}^{pl})} = 1 \qquad \Delta \omega_{D} = \frac{\Delta \bar{\varepsilon}^{pl}}{\bar{\varepsilon}^{pl}_{D}(\eta, \dot{\varepsilon}^{pl})} \ge 0$$

*ω*_D – переменная состояния, монотонно возрастающая с пластической деформацией;

ё^{*pl*} - эквивалентная пластическая деформация в начале повреждения;

 $\dot{\bar{\varepsilon}}_{D}^{pl}(\eta, \dot{\bar{\varepsilon}}^{pl})$ - скорость деформаций;

($\eta = \frac{-p}{q}$ - трехосность напряжений;

p – напряжения от давления; *q* – напряжения по Мизесу).

Shear Damage (критерий сдвига)

$$\omega_{S} = \int \frac{d\bar{\varepsilon}^{pl}}{\bar{\varepsilon}^{pl}_{S}(\theta_{s}, \dot{\bar{\varepsilon}}^{pl})} = 1 \qquad \Delta \omega_{S} = \frac{\Delta \bar{\varepsilon}^{pl}}{\bar{\varepsilon}^{pl}_{S}(\theta_{s}, \dot{\bar{\varepsilon}}^{pl})} \ge 0$$

 ω_{s} – переменная состояния, монотонно возрастающая при пластической деформации; $\bar{\varepsilon}_{s}^{pl}$ - эквивалентная пластическая деформация в начале повреждения; $\bar{\varepsilon}_{s}^{pl}(\theta_{s}, \bar{\varepsilon}^{pl})$ - скорость деформации ($\theta_{s} = \frac{q+k_{s}p}{\tau_{max}}$ - коэффициент напряжения сдвига (τ_{max} – максимальное напряжение сдвига; k_{s} – параметр материала).

Виды разрушений и основные уравнения теории упругости

Основные уравнения теории упругости

Уравнения равновесия

Геометрические уравнения

Уравнения совместности деформаций дхду дгдх $\partial \varepsilon_{xy}$ д $\partial \varepsilon_{zx}$ дz дхду ðν дz $\partial^2 \varepsilon_x$ $\partial \varepsilon_{xy}$ $\partial \varepsilon_{yz}$, д $\partial \varepsilon_{zx}$ дx дz дx дудг $\partial \varepsilon_{zx}$ $\partial \varepsilon_{yz}$ д дv дz <u>д</u>гдх дx дz

Рис.15. Виды разрушений

Рис. 16. Система координат и компоненты напряжений у начала трещины

Рис. 17. Трещина поперечного сдвига

 $\sigma_x = \frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \left(2 + \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \right);$ $\sigma_{y} = \frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3\theta}{2};$ $\tau_{xy} = \frac{K_{II}}{\sqrt{2\pi r}} \cos\frac{\theta}{2} \left(1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right);$ $\sigma_z = \nu (\sigma_x + \sigma_y); \quad \tau_{xz} = \tau_{yz} = 0;$ $u = \frac{K_{II}}{\mu} \sqrt{\frac{r}{2\pi}} \sin \frac{\theta}{2} \left(2 - 2\nu + \cos^2 \frac{\theta}{2} \right);$ $v = \frac{K_{II}}{\mu} \sqrt{\frac{r}{2\pi}} \cos \frac{\theta}{2} \left(-1 + 2\nu + \sin^2 \frac{\theta}{2} \right);$ w = 0: $K_{II} = \lim_{r \to 0} \left(\tau_{xy}(r, \theta = 0) \sqrt{2\pi r} \right) f_{II}(\theta) = \tau_{xy} \sqrt{2\pi r}$ 11

Постановка задачи

Задача решается в плоской осесимметричной постановке. Расчетная схема изображена на рис. 18:

Рис. 18. Расчетная схема: 1 – болт; 2 – гайка; 3 – профиль метрической резьбы (ГОСТ 24705-2004)

Исходные данные: Болт класса прочности 10.9: ПЛОТНОСТЬ – $\rho_{6} = 7,8 \cdot 10^{-9} \text{ т/мм}^{3}$; модуль упругости — $E_6 = 200 \cdot 10^3$ МПа; коэффициент Пуассона – $\nu_{6} = 0,3$. Алюминиевая гайка (Д16Т): ПЛОТНОСТЬ – $\rho_r = 2,77 \cdot 10^{-9} \text{ т/мм}^3$; модуль упругости $-E_r = 67,7 \cdot 10^3$ МПа; коэффициент Пуассона – $\nu_r = 0,33$. $U_{y} = 0; U_{y} = 2 \text{ MM}$ $U_{x} - U_{y} - 0$

Создание конечно-элементной модели болтового соединения

Геометрия модели (рис. 20)

Рис. 20 Детали модели, построенные в Simulia Abaqus: 1 – болт целиком; 2 – нижняя часть болта, где изображена резьба; 3 – гайка

Свойства материалов

Таблица 3. Пластические свойства алюминиевой гайки

Напряжения, МПа	Деформации	
748,0256516	0	
748,9492497	8,04816E-05	
750,6186002	0,000148097	
751,0123555	0,000238229	
751,8065024	0,000318774	
753,4666463	0,000388341	
753,8201499	0,000477199	
754,555858	0,000558562	
755,393888	0,000640246	
756,1620477	0,000719291	
756,8882376	0,00080261	
757,5950228	0,000882525	
758,2374833	0,000963382	
758,8226459	0,001046917	
759,3714917	0,001130981	
759,8574223	0,001210445	
760,2384683	0,001296971	
760,5942478	0,001383861	
760,8535205	0,001474028	
760,9740001	0,001560698	

Также для моделирования разрушения были выбраны два критерия повреждения: Ductile Damage и Shear Damage. 13

Создание конечно-элементной модели болтового соединения

Рис. 21. Контакт поверхность – поверхность

Тип контакта: поверхность – поверхность; коэффициент статического трения между поверхностями 0,2; действие в тангенциальном направление (сдвиг); для обеспечения реализации условия контакта используется метод «штрафов».

Подбор размера конечного элемента

Для разбиения объекта на конечные элементы надо подобрать размер КЭ, то есть доказать правильность решения численным методом.

Рис. 23. Расположение точки, в которой будут сравниваться напряжения в зависимости от разбиения на конечные элементы

Рис. 24. Подбор размера конечного элемента

Таким образом, размер конечных элементов равен 0,03 мм.

Разбиение на конечные элементы

Рис. 25. Разбиение модели на конечные элементы

Сетка состоит из элементов **CAX4R** (4-узловой прямоугольный КЭ сплошной среды с билинейной функцией формы для решения задач в осесимметричной постановке).

Матрица жесткости:
$$[k] = \int_{S}^{\Box} [B]^{T} [D] [B] dS$$

Матрица упругости для осесимметричной постановки:

$$[D] = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0 & \nu \\ \nu & 1-\nu & 0 & \nu \\ 0 & 0 & \frac{1-2\nu}{2} & 0 \\ \nu & \nu & 0 & 1-\nu \end{bmatrix}$$

Функции формы: $N_1 = \frac{1}{4} (1 - \xi)(1 - \eta)$ $N_2 = \frac{1}{4} (1 + \xi)(1 - \eta)$ $N_3 = \frac{1}{4} (1 + \xi)(1 + \eta)$ $N_4 = \frac{1}{4} (1 - \xi)(1 + \eta)$

Определение параметров разрушения модели болтового соединения

трещины; (b) – начало разрушения; (c) – полное разрушение резьбы; (d) – перемещение разрушенной резьбы

Анализ результатов расчета в Simulia Abaqus

Рис. 28. Нормальные напряжения σ_x : (a) – до начала образования Рис. 29. Нормальные напряжения σ_y : (a) – до начала образования Рис. 30. Нормальные напряжения σ_z : (a) – до начала образования Рис. 30. Нормальные напряжения σ_z : (a) – до начала образования Рис. 30. Нормальные напряжения σ_z : (a) – до начала образования Рис. 30. Нормальные напряжения σ_z : (a) – до начала образования Рис. 30. Нормальные напряжения σ_z : (a) – до начала образования Рис. 30. Нормальные напряжения σ_z : (b) – при образовании трещины; (c) – с трещины; (

трещины; (b) - при образовании трещины; (c) - с трещиной

Рис. 33. Перемещения вдоль оси Y: (a) – при зарождении трещины; (b) – вначале разрушения; (c) – при полном разрушении резьбы

Рис. 32. Перемещения вдоль оси X: (a) – при зарождении трещины; (b) – вначале разрушения; (c) – при полном разрушении резьбы

Заключение:

В ходе работы были выполнены следующие задачи:

- представлен аналитический обзор строения болтового соединения, главных его геометрических параметров, видов разрушения с приведением наглядных примеров;
- разработана методика разрушения резьбового соединения при растяжении соединения «болт-гайка» при различных материалах гайки (алюминий, нержавеющая сталь и бронза). В ходе эксперимента было доказано, что самой прочной является нержавеющая сталь;
- разработана конечно-элементная модель разрушения болтового соединения в программном комплексе Simulia Abaqus, в ходе которой было получено, что разрушение резьбы образуется в основании зубьев.