МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ им. В.И.ЛЕНИНА» Кафедра теоретической и прикладной механики ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ (ПРОЕКТНО-ТЕХНОЛОГИЧЕСКОЙ ПРАКТИКЕ) Обучающаяся: студентка гр.1-33М А.Ю. Дмитрюк Место прохождения практики: ИГЭУ, научно-технический центр компьютерного инжиниринга в механике, г.Иваново Руководитель: д.ф.-м.н. доцент

Иваново 2021

Л.Б. Маслов

Цель: исследование влияния физико-механических свойств и конструкций эндопротеза на напряженнодеформированное состояние системы «таз – кастомизированный имплантат» при ходьбе. Задачи:

- 1. создание и верификация конечно-элементных моделей биомеханических конструкций;
- исследование напряженно-деформированного состояния системы «таз кастомизированный имплантат» при ходьбе разных конструкций эндопротезов;
- 3. анализ влияния различных физико-механических свойств на напряженно-деформированное состояние. ²

Клиническая информация

<u>Пациент 1</u>

Сторона: правая

Тип операции: ревизионное эндопротезирование

ТБС, ортопедия <u>Возраст:</u> 34 года <u>Пол</u>: Ж

Пациент 2

<u>Сторона:</u> правая

Тип операции: первичное эндопротезирование

ТБС, онкология

<u>Возраст:</u> 34 года <u>Пол</u>: М

Рисунок 1 – Поверхностная модель таза, полученная с компьютерной томографии в

предоперационный период: а) пациент 1; б) пациент 2

Рисунок 2 – Поверхностная модель таза, полученная с компьютерной томографии в послеоперационный период: а) пациент 1; б) пациент 2

Математическая постановка задачи

системы координат

4

Физико-механические свойства материалов

Таблица 1 – Физико-механические характеристики материалов

Mamanara		Упруго	Упругость	
материал	$p, \kappa i \gamma m m^2$	<i>Е</i> , МПа	ν	
1 расчетный случай				
Спонгиозная костная ткань	$0,2 \cdot 10^{-6}$	360	0,2	
Кортикальная костная ткань	1,7 · 10 ⁻⁶	17000	0,3	
2 расчетный случай				
Спонгиозная костная ткань	$0,2 \cdot 10^{-6}$	1412,85	0,2	
Кортикальная костная ткань	$1,7 \cdot 10^{-6}$	12324,8	0,3	
Характеристики титанового сплава				
Титановый сплав	$4,43 \cdot 10^{-6}$	113 800	0,342	
Трабекулярный титан	$1,52 \cdot 10^{-6}$	5500	0,35	
спонгиозная костная Ккањ српикальная ко Ткањ	остная Стрисунок 6 –	Ган Физико-механически	титан абекулярная структура титан е свойства	
Рисунок 5 – Физико-механически	ие свойства имп	войства имплантата: а) пациент 1.		
тазовой кости		б) пациент 2 5		

Конечно-элементные модели системы

- тип конечного элемента: линейный треугольный э́лемент (C3D4);
- толщина кортикального слоя 2 мм; глубина пористого слоя не менее 2 мм;
- процент некачественных элементов <5%

Сборка системы «тазкастомизированный имплантат»

Взаимосвязи в винтовом соединении

- жесткие связи: крестец-тазовые кости; винт-тазовая кость, головка винта-имплантат
- контактные пары: имплантат-кость (коэффициент трения 0,6)

Анализ НДС в винтах при затяге

Рисунок 9 – Распределение напряжений в винтах при их затяге, МПа

Здесь и далее по тексту : а) пациент 1; б) пациент 2; 1 – первый расчетный случай, 2 – второй расчетный случай

Анализ НДС в винтах при ходьбе

— винт 8

a)

- Предельное напряжение

винт 7

—винт 10

Фаза шага, %

0

•••• ВИНТ 2

Рисунок 10 – Распределение напряжений в винтах при ходьбе, МПа

-×винт 9

Анализ НДС в эндопротезе при ходьбе

Рисунок 11 – Распределение напряжений в эндопротезе при ходьбе (максимальные нагрузки), МПа

Анализ НДС в компактной ткани при ходьбе

Рисунок 12 – Распределение напряжений в компактной костной ткани при ходьбе (максимальные нагрузки), МПа

Предельные показатели напряжений в компактной ткани: 150-200 МПа

Анализ НДС в спонгиозной ткани при ходьбе

Рисунок 13– Распределение напряжений в спонгиозной костной ткани при ходьбе (максимальные нагрузки), МПа

Предельные показатели напряжений в спонгиозной ткани: 5-10 МПа

Заключение

В ходе работы смоделирована система «таз – кастомизированный имплантат» при ходьбе:

- создана и проведена верификация конечно-элементных моделей биомеханических конструкций;
- исследовано напряженно-деформированное состояние системы «таз – кастомизированный имплантат» при ходьбе разных конструкций эндопротезов;
- проведен анализ влияния различных физико-механических свойств на напряженно-деформированное состояние.

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ им. В.И.ЛЕНИНА» Кафедра теоретической и прикладной механики ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ (ПРОЕКТНО-ТЕХНОЛОГИЧЕСКОЙ ПРАКТИКЕ) Обучающаяся: студентка гр.1-33М А.Ю. Дмитрюк Место прохождения практики: ИГЭУ, научно-технический центр компьютерного инжиниринга в механике, г.Иваново Руководитель: д.ф.-м.н. доцент

Иваново 2021

Л.Б. Маслов