ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА на тему:

«ИССЛЕДОВАНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ ЭЛЕМЕНТА ПОДЪЕМНОГО МЕХНИЗМА МАШИНЫ»

Обучающийся:

студент гр. 4-33 Е.И. Перепелкин

Руководитель: Т.В. Шмелева

Цель и задача

Цель работы:

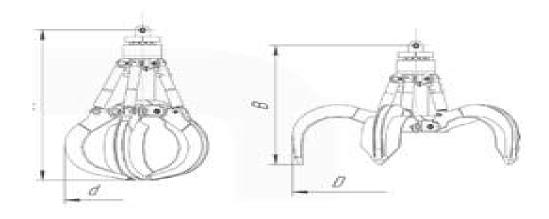
Исследование напряженно-деформированного состояния элемента подъемного механизма машины.

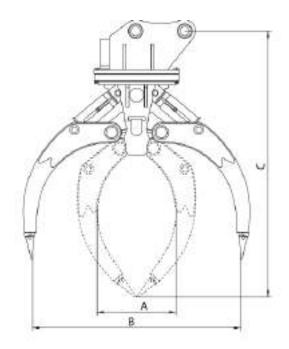
Задачи работы:

- Математическая постановка основной научно-исследовательской или производственно-технологическая задачи (задач);
- Разработка методов и подходов решения основной научноисследовательской или производственно-технологическая задачи (задач);
- Проведение компьютерного и/или физического моделирования для решения основной научно-исследовательской или производственно-технологическая задачи (задач);
- Анализ полученных результатов;
- Заключение.

Формулировка цели и задач ВКР

 Аналитический обзор показал, что в настоящее время обнаружены основные проблемы при использовании грейфера. В связи с этим целю работы стало модернизация конструкции.




Рис.1.

. Разработка расчетной схемы узла «Челюсть грейфера»

В качестве рассчитываемой модели выбираем грейфер марки МТ3,5 300

Технические данные:

• Грузоподъемность, т	4
• Рассчитываемый объем, м3	0,3
• Масса груза, т	2
Габаритные размеры, мм	
• Ширина в раскрытом состоянии А	1250
• Ширина в закрытом состоянии В	2100
• Высота С	2140

Постановка задачи

1) Уравнения равновесия

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X = 0$$

$$\frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} + Y = 0,$$

$$\frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \tau_{zy}}{\partial y} + \frac{\partial \sigma_{z}}{\partial z} + Z = 0.$$

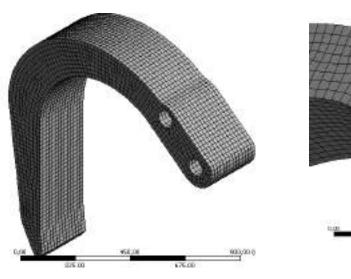
2) Уравнения деформаций

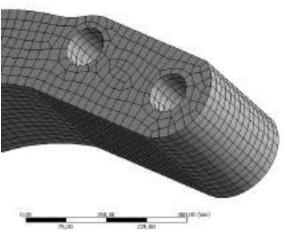
$$\varepsilon_x = \frac{\partial u}{\partial x}\,, \quad \varepsilon_x = \frac{\partial v}{\partial y}\,, \quad \varepsilon_x = \frac{\partial w}{\partial z}\,,$$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}, \quad \gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y},$$

$$\gamma_{zx} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \ .$$

$$\sigma_x = \lambda \theta + 2\mu \varepsilon_x, \qquad \tau_{xy} = \mu \gamma_{xy},$$

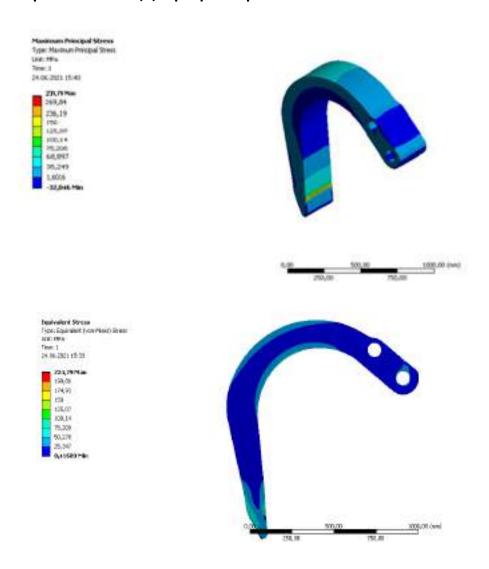

$$\sigma_y = \lambda \theta + 2 \mu \varepsilon_y \,, \qquad \tau_{yz} = \mu \gamma_{yz} \,, \label{eq:sigma_yz}$$


$$\sigma_z = \lambda \theta + 2\mu \varepsilon_z, \qquad \tau_{zx} = \mu \gamma_{zx};$$

Механические свойства Сталь 09Г2С

ГОСТ	Состояни е поставки	Сечение, мм	Предел текучести, МПа		Плотност ь, г/см ³
19281-73	Сортовой и фасонный	До 10	345	490	7.82
19282-73	Листы и полосы (образцы поперечные)	От 10 до 20 От 20 до 32 От 32 до 60 От 60 до 80 От 80 до 160	325 305 285 275 265	470 460 450 440 430	7.82
19282-73	Листы после закалки, отпуска (Образцы поперечные)	От 10 до 32 От 32 до 60	365 315	490 450	7.82
17066-80	Листы горячекатаные	2-3,9	-	490	7.82

Построение конечно-элементной модели в программном комплексе ANSYS



Моделирование втулочного соединения Создание модели втулочного соединения в программном комплексе ANSYS

Расчет напряженно-деформированного состояния детали

Вывод

Была поставлена задача смоделировать элемент подъемного механизма машины, выдерживающий нагрузку от гидроцилиндра на сжатие на 90% от предела текучести используемого материала.
 Максимальные напряжения при нагрузке 134,6 кН достигают 271,79 Мпа, что является 89% от предела текучести для стали 09Г2С с сечением свыше 20 до 32 мм включительно.