МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.И. ЛЕНИНА»

Кафедра теоретической и прикладной механики

Разработка системы вибромониторинга роторных машин

Выполнила: студентка гр.4-33

Городова С.М.

Руководитель: доц., к. т. н.

Колобов А.Б.

Цель

- Апробация в учебных и практических целях программнотехнического комплекса вибромониторинга (ПТКВ) на основе программной системы (ПС) «АГАТ-Протокол» и измерительного средства — виброанализатор АГАТ (производитель ООО «Диамех 2000»);
- Отладка методики диагностирования дефектов центробежного насоса сетевой воды CR-90-3-2 Grundfos, проведение диагностики и анализ результатов.

Задачи

Для достижения цели работы должны быть решены следующие задачи:

- Произведена уточняющая классификация контролируемого оборудования, разработаны маршрутные карты контроля и выбрана нормативная база оценки вибрации;
- Сформирована база данных измерений по отдельным типам машин, приведены примеры методики анализа временных дампов и спектров вибрации машин, а также примеры диагностирования отдельных дефектов.

Технология «off-line» контроля

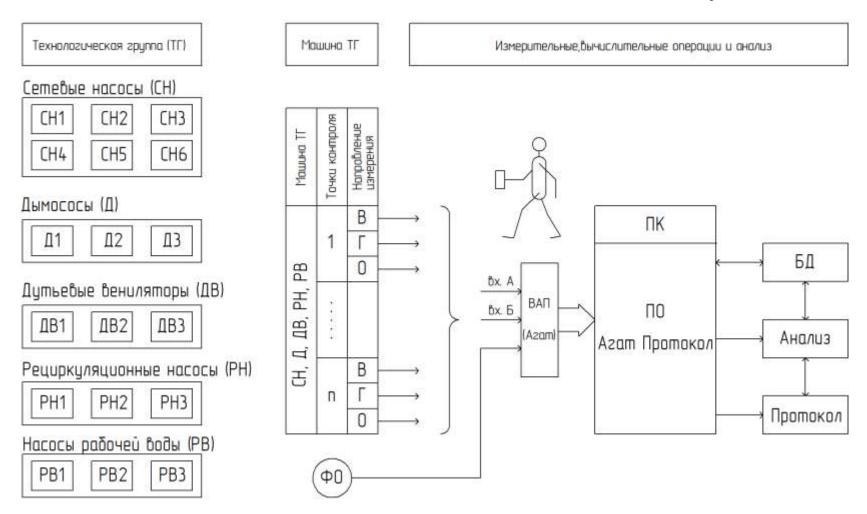


Рис.1. Этапы технологии «off-line» контроля роторных машин котельной ИГЭУ

Нормативная база контроля вибрации машин технологических групп

	Технологические группы								
Технические параметры	Сетевые насосы (СН)	Дымососы (Д)	Вентиляторы дутьевые (ДВ)	Рециркуляци- онные насосы (РН)	Насосы рабочей воды (РВ)				
Тип	CR-90-3-2 Grundfos*	Д-12,5	вдн-10	AK 80-160/16/- 22,0/2	АЦМС- 40- 160/158				
Тип электродвигателя	MG160LB2*	5АИ16SУ3	АИР160S6У3	АИР180S2У3**	RA132S A2Y3				
Мощность, кВт	18,5 *	11	11	22 **	5,5				
Номинальная частота вращения, мин-1	2940 *	970	970	2920 **	2895				

Технологическая группа	гост	Класс/	Граница зон состояний, мм/с			
	исо	группа	A/B	B/C	C/D	
Сетевой насос (CH)	10816-3	2	1,4	2,8	4,5	
Дымосос (Д)	10016 1	1	0,71	1,8	4,5	
Дутьевой вентилятор (ДВ)	10816-1	1	0,71	1,0	4,3	
Рециркуляционный насос (PH)	10816-3	3	3,5*	7,1*	11,0*	
Насос рабочей воды (PB)	10816-1	1	0,71	1,8	4,5	

Примечание: *) Для насосов СН1 - СН3, СН5.

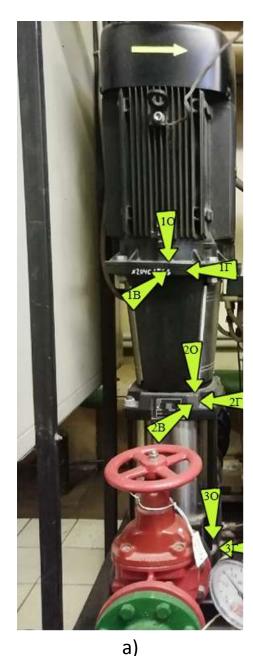
Hacoc CH4 CR-90-3-2 (Grundfos)

электродвигатель 5А160М293 (Россия) мощность 18,5 кВт,

номинальная частота вращения 2920 мин-1

Hacoc PH1 NK80-160/161 (Grundfos),

электродвигатель GMC2-160L-2B3 (Китай) мощность 18,5 кВт,


номинальная частота вращения 2940 мин-1

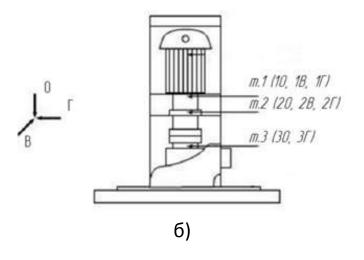

Примечание: *) Упругая установка агрегата (податливая опора).

Таблица 1. Технические параметры машин технологических групп

Таблица 2. Границы зон вибрационного состояния

^{**)} Для насосов PH2 и PH3.

Точка контроля	Направление измерения	Результаты измерения СКЗ виброскоро		Границы зон состояний ГОСТ ИСО 10816-3, мм/с		Уровень ПРЕДУПРЕЖДЕНИЕ ГОСТ ИСО 10816-3, установленный по	Техническое состояние
T	Напр	<u>сти,</u> мм/с	A/B	B/C	C/D	базовому уровню, мм/с	СОСТОЯНИС
	В	2,9				2,8	
1	Γ	4,0				2,86	
	o	3,3				3,0	Зона <u>. С</u>
	В	2,0	1.4	2.0	1.5	1,83	
2	Γ	1,9	1,4	2,8	4,5	2,47	требуется
	o	2,3				1,97	диагностика
3	Γ	2,8				2,03	
3	0	1,3				1,93	

Таблица 3. Техническое состояние сетевого насоса СН2, оцененное по рекомендациям ГОСТ ИСО 10816-3-2002

		Результаты измерения	Индивидуальные границы зон состояний, мм/с			Уровень ПРЕДУПРЕЖДЕНИЕ установленный с учетом	Техническое состояние
T	Напр	нэмерения	A/B	B/C	C/D	учетом индивидуальных границ, мм/с	состояние
	В	2,9				2,8	
1	Γ	4,0	1,4	2,8	4,5	2,86	2 6
	0	3,3				3,0	Зона С
	В	2,0	1,12	1,8	2,8	1,6	05
2	Γ	1,9	1,4	2,3	3,5	2,12	Обязательно требуется
	0	2,3	1,12	1,8	2,8	1,56	треоуется диагностика
3	Γ	2,8	1,12	1,8	2,8	1 ,7	диагностика
3	0	1,3	1,12	1,8	2,8	1,6	

Рис.2. Маршрутная карта контроля вибрации сетевого насоса: а – внешний вид; б – эскизное изображение

Таблица 4. Техническое состояние сетевого насоса CH2, оцененное по $_6$ индивидуальным границам зон состояний (дополнение к ГОСТ ИСО 10816-3-2002)

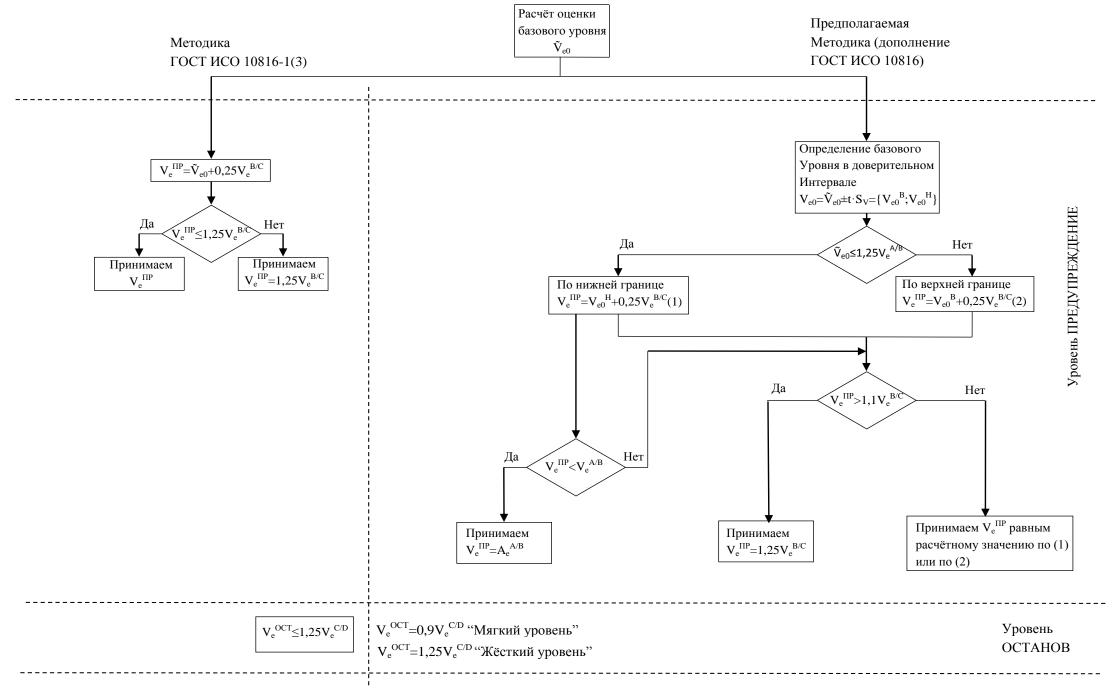
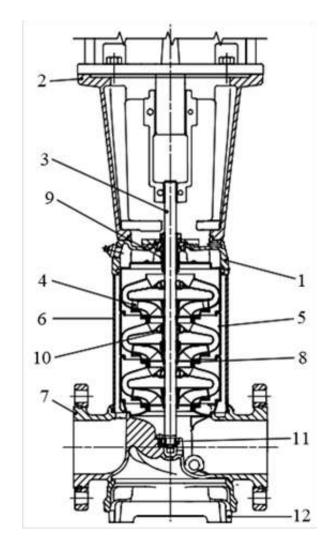



Рис.3. Принципиальные отличия разработанной методики установки ограничительных уровней от рекомендованных ГОСТ ИСО 10816

Описание конструкции насоса CR90-3-2 Grundfos

Поз.	Наименование	Материалы	EN/DIN	AISI/ASTM
насоса		CR: чугун EN-GJS-500-7	EN-JS 1050	•
	CRN: Нерж. сталь	1.4408	AISI 316LN	
2	Фланец крепл. электродвиг.	Чугун EN-GJL-200	EN-GL 1030	ASTM 25B
3	Вал	Нерж. сталь	1.4462	
4	Рабочее колесо	Нерж. сталь	1.4401	AISI 316
5	Промежуточная камера	Нерж. сталь	1.4401	AISI 316
6	Цилиндр, кожух	Нерж. сталь	1.4401	AISI 316
7 Основание	CR: чугун EN-GJS-500-7	EN-JS 1050	· ·	
	CRN:			
		Нерж. сталь	1.4408	AISI 316LN
8	Щелев. уплотн.	Углеграфит с		1.1000000000000000000000000000000000000
		оболочкой из РТГЕ	2	9.0
9	Уплотнение вала	HQQE, HQQV, HQQF, HQQK		
10	Втулка подшип.	Бронза/углеграс с оболочкой из РТП		(3.4.5)
11	Нижнее кольцо подшипника	тс/тс•		
12	Плита-основ.	CR: чугун EN-GJS-500-7	EN-JS 1050	ASTM 80-55-06
		Нерж. сталь		-E-3
	Эластомеры	EPDM, FKM (Vite FFKM или FXM	on)	-

Рис.4. Конструкция насоса CR90-3-2

Информативные вибрационные частоты в спектрах

Основные			Гармон	ики
Частоты	Гц	Частоты	k	Гц
1. Оборотная		kf_0	2	97,8
			3	146,7
$f_0 = \frac{n_{\rm H}}{60} *$	48,9		4	195,6
60			5	244,5
			6	293,4
2. Вибрация направляющих			2	978
лопаток (НЛ):	489	$kf_{\scriptscriptstyle H}$	3	1467
$f_{\mathtt{H}} = z_{\mathtt{H}} f_{\mathtt{0}}$			4	1956
3. Вибрация лопаток			2	586,8
ступени (ЛС):	293,4	kf_n	3	880,2
$f_{\pi}=z_{\pi}f_{0}$			4	1173,6
	Бо	ковые частоты		
			2	537,9
		$f_{\scriptscriptstyle m H} \pm k f_{ m 0}$	2	440,1
Модуляция НЛ	489		3	586,8
$f_{\scriptscriptstyle \mathrm{H}}$	469		3	391,2
			4	635,7
			4	342,3
			2	342,3
			2	244,5
Модуляция ЛС	202.4	$f_{\pi}\pm kf_{0}$	3	391,2
f_{π}	293,4	$J_{\pi} \pm \kappa J_{0}$	3	195,6
			4	440,1
*\			4	146,7

Примечание: *) $n_{\rm H}$ — асинхронная частота вращения ротора электродвигателя $n_{\rm H}$ = 2940 мин-¹

Таблица 5. Расчетные частоты в спектрах вибрации

Тип	6309-С4 (80309), шариковый радиальный
Внутренний диаметр, мм	45
Внешний диаметр, мм	100
Диаметр тел качения, мм	17,462
Количество тел качения, шт.	8

Таблица 6. Параметры подшипника электродвигателя

Основные	Гармоники			
Частоты	Гц	Частоты	k	Гц
• тела качения (BSF):			2	382,5
$f_k = f_0 \frac{d_0}{d_T} \left(1 \pm \frac{d_T^2}{d_0^2} \cdot \cos^2 \beta \right)$	191,3	$kf_{\scriptscriptstyle K}$	3	573,7
$u_T (u_0)$			4	764,9
• сепаратор (FTF):			2	37,1
$f_{\rm c} = \frac{f_0}{2} \left(1 \pm \frac{d_T}{d_0} \cdot \cos \beta \right)$	18,5	kf_c	3	55,6
a_0			4	74,2
• наружное кольцо (ВРГО):			2	296,9
$f_{\rm H} = \frac{f_0 z}{2} \left(1 - \frac{d_T}{d_T} \cdot \cos \beta \right)$	148,5	$kf_{\scriptscriptstyle{\mathcal{H}}}$	3	445,4
$2 \left(a_0 \right)$			4	593,9
• внутреннее кольцо			2	485,4
(BPFI): f_{oZ} / d_{-}	242,7	kf_{ε}	3	728,1
$f_{\rm B} = \frac{f_0 z}{2} \left(1 + \frac{d_T}{d_0} \cdot \cos \beta \right)$			4	970,8

Таблица 7. Расчетные частоты, генерируемые элементами подшипника электродвигателя в спектрах вибрации

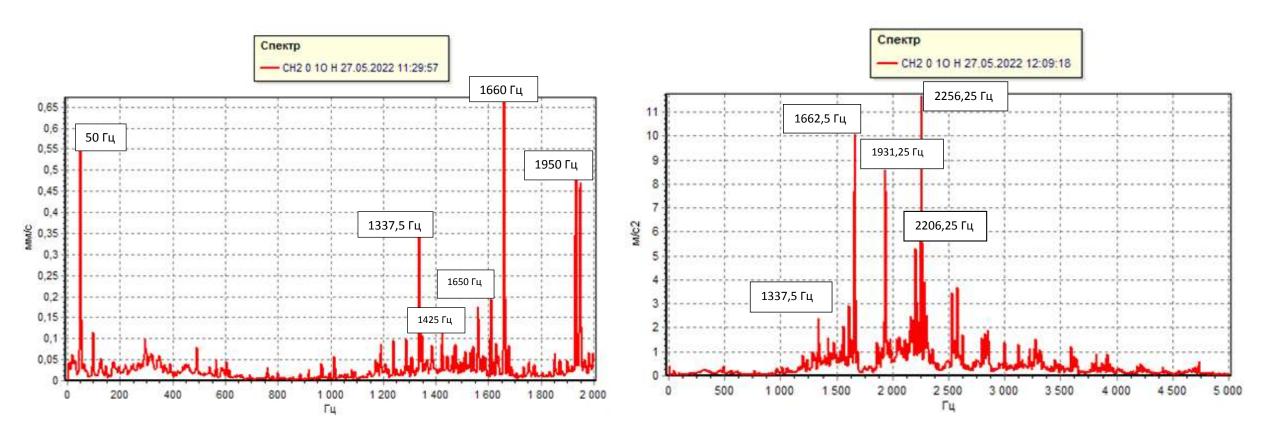


Рис.5. Спектр вибрации насоса СН2 под нагрузкой в осевом Рис.6. Спектр вибрации насоса СН2 под нагрузкой в осевом направлении измерения в т. 1 (виброскорость)

направлении измерения в т. 1 (вибоускорение)

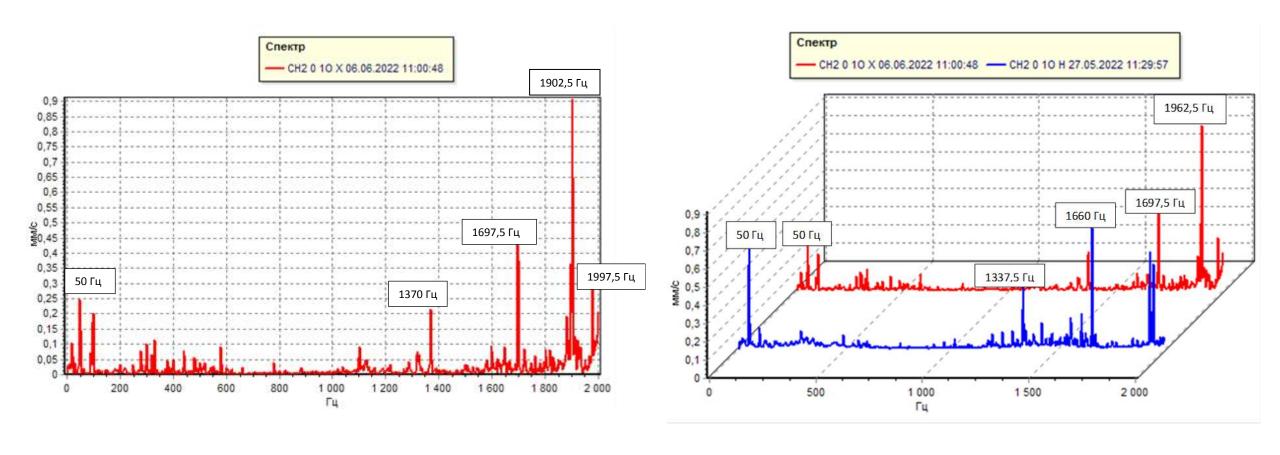


Рис.7. Спектр вибрации насоса СН2 на холостом ходу в осевом направлении измерения в т. 1 (виброскорость)

Рис.8. Каскад спектров вибрации насоса СН2 под нагрузкой (синий) и на холостом ходу (красный) в осевом направлении измерения в т. 1 (виброскорость)

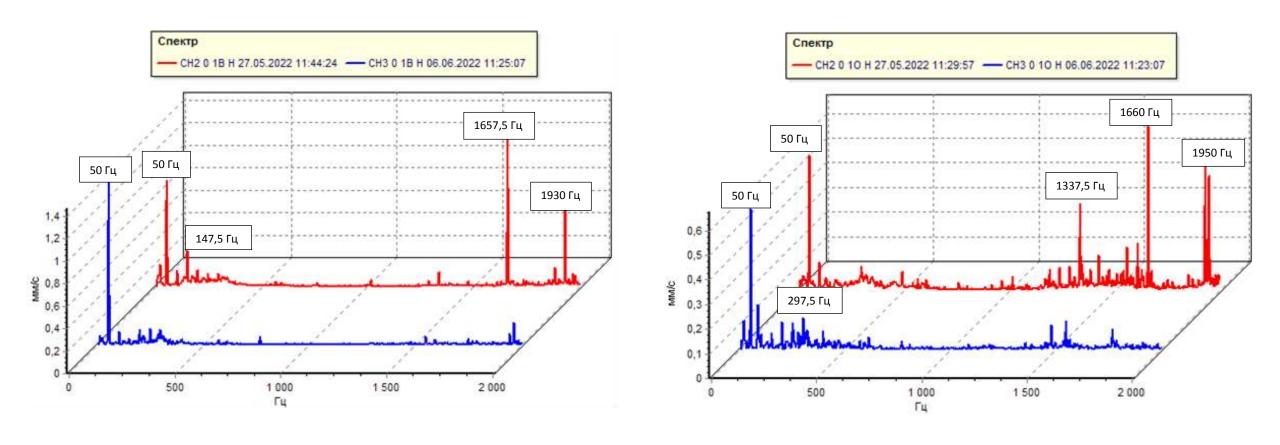


Рис.9. Каскад спектров вибрации насосов СН2 (красный) и СН3 (синий) под нагрузкой в вертикальном направлении измерения в т. 1 (виброскорость)

Рис.10. Каскад спектров вибрации насосов СН2 (красный) и СН3 (синий) под нагрузкой в осевом направлении измерения в т. 1 (виброскорость)

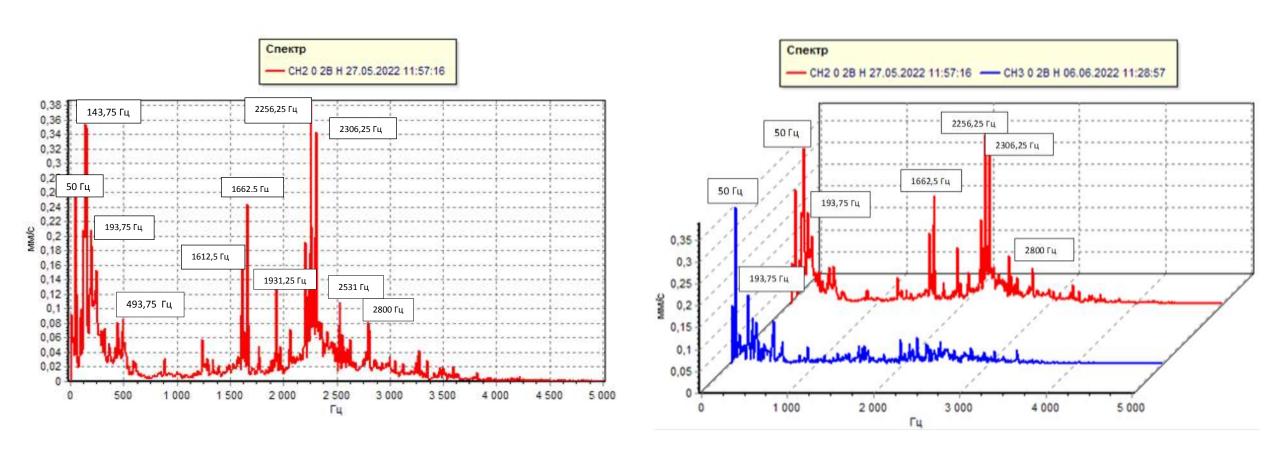


Рис.11. Спектр виброскорости насоса CH2 под нагрузкой в вертикальном направлении измерения в т. 2

Рис.12. Каскад спектров вибрации насосов CH2 (красный) и CH3 (синий) под нагрузкой в вертикальном направлении измерения в т. 2 (виброскорость)

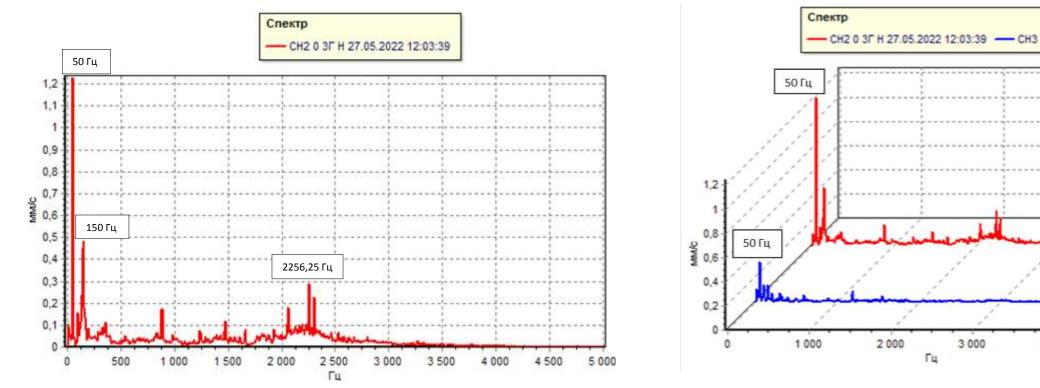


Рис.13. Спектр вибрации насоса СН2 под нагрузкой в горизонтальном направлении измерения в т. 3 (виброскорость)

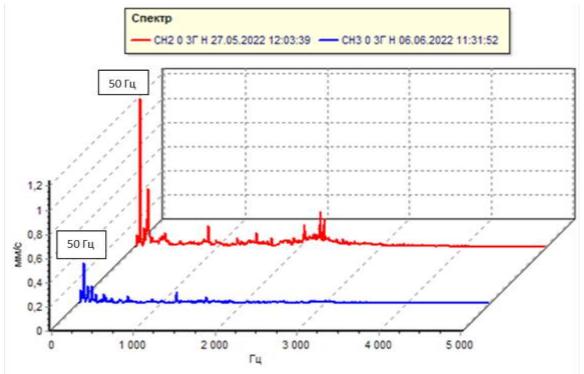


Рис.14. Каскад спектров вибрации насосов СН2 (красный) и СНЗ (синий) под нагрузкой в горизонтальном направлении измерения в т. 3 (виброскорость)

Заключение

В ходе работы были проведены:

- апробация в учебных и практических целях программно-технического комплекса вибромониторинга (ПТКВ) на основе программной системы (ПС) «АГАТ-Протокол» и измерительного средства виброанализатор АГАТ (производитель ООО «Диамех 2000»);
- отладка методики диагностирования дефектов центробежного насоса сетевой воды CR-90-3-2 Grundfos, проведение диагностики и анализ результатов.

В целом, поставленная задача была решена и результаты работы могут использоваться как в учебных, так и практических целях.