Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Ивановский государственный энергетический университет имени В.И. Ленина» Факультет электромеханический Кафедра теоретической и прикладной механики Направление подготовки 01.03.03 Механика и математическое моделирование Направленность (профиль) — Динамика и прочность сложных механических систем

«Конечно-элементный анализ прочности траверсы фрезерного станка»

Выполнила: студентка группы 4-33

Молокова Д.Д.

Научный руководитель: доцент каф. ТиПМ, д.ф.-м.н.

Маслов Л.Б.

Цель работы:

Исследование напряженно-деформированного состояния и оценка работоспособности конструкции траверсы фрезерно-сверлильно-расточного станка.

Задачи:

- 1. Создание и верификация конечно-элементной модели траверсы;
- 2. Исследование напряженно-деформированного состояния траверсы;
- 3. Оптимизация конструкции.

Объект исследования

Рисунок 1 – Модель фрезерного станка, предоставленная ООО «ИСЗ»

Рисунок 2 – Основные размеры траверсы, предоставленные ООО «ИСЗ»

Рисунок 3 – Оболочечная модель траверсы, построенная в SolidWorks

Масса траверсы т=4272,9 кг

Постановка задачи

Уравнения моментной теории оболочек:

Физические соотношения:

Физические соотношения:
$$T_1 = \frac{Eh}{1 - \mu^2} (\varepsilon_1 + \mu \varepsilon_2); \qquad M_1 = D(\chi_1 + \mu \chi_2);$$

$$T_2 = \frac{Eh}{1 - \mu^2} (\varepsilon_2 + \mu \varepsilon_1); \qquad M_2 = D(\chi_2 + \mu \chi_1); \qquad \qquad \Gamma$$
 Геометрические соотношения:
$$T_{12} = \frac{Eh}{2(1 + \mu)} \gamma; \qquad M_{12} = D(1 - \mu) \chi_{12}; \qquad \varepsilon_{1z} = \varepsilon_1 + \chi_1 z; \qquad \varepsilon_{2z} = \varepsilon_2 + \chi_2 z; \qquad \gamma_z = \gamma + 2 \chi_{12} z;$$

$$\varepsilon_1 = \frac{1}{R_1} (\frac{\partial u}{\partial \theta} + w); \qquad \varepsilon_2 = \frac{1}{r} \frac{\partial v}{\partial \phi} + \frac{u}{r} \cos \theta + \frac{w}{R_2};$$

Уравнения равновесия:

$$\begin{split} Q_1 &= \frac{1}{R_1} \frac{\partial M_1}{\partial \theta} + \frac{M_1 - M_2}{r} \cos \theta + \frac{\partial M_{12}}{r \partial \varphi} \\ Q_2 &= \frac{\partial M_2}{r \partial \varphi} + \frac{\partial M_{12}}{R_1 \partial \theta} + 2M_{12} \frac{\cos \theta}{r} \\ &\frac{1}{R_1} \frac{\partial T_1}{\partial \theta} + \frac{T_1 - T_2}{r} \cos \theta + \frac{\partial T_{12}}{r \partial \varphi} - \frac{Q_1}{R_1} + P_{\theta} = 0 \\ &\frac{1}{r} \frac{\partial T_2}{\partial \varphi} + \frac{1}{R_1} \frac{\partial T_{12}}{\partial \theta} + \frac{2T_{12}}{r} \cos \theta - \frac{Q_2}{R_1} + P_{\varphi} = 0 \\ &\frac{T_1}{R_1} + \frac{T_2}{R_2} + \frac{1}{R_1} \frac{\partial Q_1}{\partial \theta} + \frac{Q_1}{r} \cos \theta = P_n \end{split}$$

$$\varepsilon_{1} = \frac{1}{R_{1}} \left(\frac{\partial u}{\partial \theta} + w \right); \quad \varepsilon_{2} = \frac{1}{r} \frac{\partial v}{\partial \varphi} + \frac{u}{r} \cos \theta + \frac{w}{R_{2}};$$

$$\gamma = \frac{1}{r} \frac{\partial u}{\partial \varphi} + \frac{1}{R_{1}} \frac{\partial v}{\partial \theta} - \frac{v}{r} \cos \theta;$$

$$\vartheta_{1} = \frac{1}{R_{1}} \left(\frac{\partial w}{\partial \theta} - u \right); \quad \vartheta_{2} = \frac{\partial w}{r \partial \varphi} - \frac{v}{R_{2}};$$

$$\chi_{1} = \frac{1}{R_{1}} \frac{\partial \vartheta_{1}}{\partial \theta}; \quad \chi_{2} = \frac{1}{r} \frac{\partial \vartheta_{2}}{\partial \varphi} + \frac{\vartheta_{1}}{r} \cos \theta;$$

$$\chi_{12} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial \vartheta_{1}}{\partial \varphi} + \frac{1}{R_{1}} \frac{\partial \vartheta_{2}}{\partial \theta} - \frac{\vartheta_{2}}{r} \cos \theta \right).$$

ГОСТ 380-2005					
Марка сплава	Плотность р (кг/м ³)	Модуль Юнга Е (ГПа)	Предел текучести (МПа)	Коэффициент Пуассона v	
Ст3сп	7850	200	250	0,3	

Рисунок 4 – Граничные условия траверсы

3 вида нагрузки:

- 1. Весовая нагрузка 30000 Н;
- 2. Комбинация весовой нагрузки и усилий резания в положительном направлении осей Ох и Оу;
- 3. Комбинация весовой нагрузки и усилий резания в отрицательном направлении осей Ох и Оу.

Разработка расчетной модели

Метод решения: метод конечных элементов

Основная система линейных алгебраических уравнений МКЭ:

KU=F,

где K - матрица жесткости системы, U - вектор узловых перемещений, **F** - вектор внешних сил.

Рисунок 5 – Конечный элемент SHELL181

Обоснование метода решения

Аналитическое решение [1]

$$w = 0.0243 \cdot \frac{q \cdot a^4}{E \cdot \delta^3} = 0.0243 \cdot \frac{0.00054 \cdot 125^4}{2 \cdot 10^6 \cdot 0.1^3} = 1.6 \text{ см}$$

Рисунок 7 – Пластина

Рисунок 8 – Перемещения пластины при 2100 элементах

Таблица 2 – Исследование сеточной сходимости

	Решения	Результат, (мм)	Расхождение с аналитическим решением, (%)
Ана	алитическое решение	16,018	_
1	56 элементов (сетка 8×7) (рис.16)	14,7	$\delta = \frac{16,018 - 14,7}{16,018} \cdot 100\%$ $= 8,22$
2	90 элементов (сетка 10×9)	15,3	4,48
3	195 элементов (сетка 15×13)	15,59	2,67
4	750 элементов (сетка 30×25)	15,92	0,6
5	2100 элементов (сетка 50×42) (рис.17)	16,017	0,0062

Исходные данные:

a = 1,25 м - ширина пластины,

 $b = 1,5 \text{ м} - длина пластины,}$

 $\delta = 0.001 \, \text{м} - \text{толщина пластины},$

материал пластины – Ст.3 (ГОСТ 380-2005),

 $E = 2 \cdot 10^{11} \ \Pi a$ – модуль упругости,

 $\nu = 0.3 -$ коэффициент Пуассона,

 $\rho = 7850 \ \mbox{кг/м3} - \mbox{плотность материала пластины,}$

 $D = E \cdot \delta^3 / 12(1 - v^2) = 18,315 \frac{H}{M^2}$ – цилиндрическая жесткость,

P = 100 H - сосредоточенная нагрузка, которая заменяется распределенной,

 $S = a \cdot b = 1,25 \cdot 1,5 = 1,875 \text{ m}^2 = 1,875 \cdot 10^6 \text{ mm}^2$

 $q = \frac{P}{S} = \frac{100}{1.875 \cdot 10^6} = 0,0000533 \frac{H}{MM^2}$ – распределенная нагрузка, $q = 0,00054 \text{ кг/см}^2$.

Рисунок 9 – Верификация по собственным частотам

6

1. Д.В. Вайнберг и Е.Д. Вайнберг. Расчёт пластин. Киев, 1970.

Верификация конечно-элементной модели

Таблица 3 – Сравнение частот без закреплений

	Оболочечная	Трехмерная
1-ая частота (Гц)	44,121	55,392
2-ая частота (Гц)	78,12	85,267
3-ая частота (Гц)	82,355	108,267
4-ая частота (Гц)	117,9	128,65

Таблица 4 – Сравнение частот с учетом граничных условий

	Оболочечная	Трехмерная
1-ая частота (Гц)	130,12	112,2
2-ая частота (Гц)	188,14	143,78
3-ая частота (Гц)	193,36	193,73
4-ая частота (Гц)	226,08	201,54

Варианты нагружения

Remote Force

Time: 1, s 23.06.2022 17:14

Remote Force: 30000 N Components: 0,:0,:-30000 N Location: 0,., -1900,., -439, mm

Рисунок 11 – Кинематические граничные условия

Рисунок 12 – Весовая нагрузка

Рисунок 13 – Комбинация весовой нагрузки и усилий резания в положительном направлении осей Ох и Оу

Анализ напряжений

Рисунок 15 – Напряжения при действии весовой нагрузки

Рисунок 16 – Напряжения при действии комбинации весовой нагрузки и усилий резания в положительном направлении осей Ох и Оу

Рисунок 17 — Напряжения при действии комбинации весовой нагрузки и усилий резания в отрицательном направлении осей Ох и Оу

Анализ перемещений траверсы при действии весовой нагрузки

Рисунок 18 – Перемещения при действии весовой нагрузки

Рисунок 19 – Путь распределения перемещений

Рисунок 20 – Путь распределения перемещений

Анализ перемещений траверсы при действии комбинации нагрузки

Рисунок 21 — Картина распределения перемещений при действии комбинации весовой нагрузки и усилий резания в положительном направлении осей Ох и Оу

Рисунок 22 – Картина распределения перемещений при действии комбинации весовой нагрузки и усилий резания в отрицательном направлении осей Ох и Оу 11

Параметрический анализ

Рисунок 23 – Выбранные для оптимизации ребра

	A	8	C	D
1.	ID	Parameter Name	Value	Unit
2	☐ Input Parameters			
3	☐ ☐ Copy of Static Structural (C1)			
4	₽2	Surface Body Thickness	16	mm 👱
5	₽ P3	Surface Body Thickness	16	men men men men men men men men
6	₿ Р8	Surface Body Thickness	16	mm.
7	₽ ₽9	Surface Body Thickness	16	mm 💌
8	₽ P10	Surface Body Thickness	16	mm _
9	Cp P11	Surface Body Thickness	16	eum 💌
10	tp P12	Surface Body Thickness	16	mm
*	to New input parameter	New name.	New expression	
12	☐ Output Parameters			
13	☐ ☐ Copy of Static Structural (C1)			
14	P7 P7	Total Deformation Maximum	0,040221	mm
	pa New output parameter		New expression	
16	⊞ Charts			
17	Parameter Parallel Chart 0			

Рисунок 24 – Задание параметров детали

При параметрической анализе было заявлены условия:

- внешние грани должны быть неизменны;
- минимальная масса;
- минимальные толщины выбранных для расчета ребер в диапазоне 16-60 мм;
- значения перемещений в диапазоне 0,005-0,01 мм.

Рисунок 25 – Максимальные перемещения в месте пересечения диагональных ребер

Заключение

- Разработана оболочечная модель траверсы, проведен обзор физико-механических свойств материала.
- Выполнен расчет напряженно-деформированного состояния, в ходе которого выяснилось, что траверса проходит по условиям прочности, но не обладает необходимой жесткостью.
- В ходе параметрического анализа толщин внутренних ребер не удалось понизить значения перемещений и повысить жесткостные характеристики. При условии, что внешние грани остаются неизменными, с данной конфигурацией внутренних ребер получить заявленные результаты невозможно, соответственно, необходимо изменить конструкцию внутренних ребер.