Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Ивановский государственный энергетический университет имени В.И. Ленина» Факультет электромеханический Кафедра теоретической и прикладной механики Направление подготовки 01.03.03 Механика и математическое моделирование Направленность (профиль) – Динамика и прочность сложных механических систем

«Конечно-элементный анализ прочности траверсы фрезерного станка»

Выполнила: студентка группы 4-33

Молокова Д.Д.

Научный руководитель: доцент каф. ТиПМ, д.ф.-м.н.

Маслов Л.Б.

Цель работы:

Исследование напряженно-деформированного состояния и оценка работоспособности конструкции траверсы фрезерно-сверлильно-расточного станка.

Задачи:

- 1. Создание и верификация конечно-элементной модели траверсы;
- 2. Исследование напряженно-деформированного состояния траверсы;
- 3. Оптимизация конструкции.

Объект исследования

Рисунок 1 – Модель фрезерного станка, предоставленная ООО «ИСЗ»

Рисунок 2 – Основные размеры траверсы, предоставленные ООО «ИСЗ»

Рисунок 3 – Оболочечная модель траверсы, построенная в SolidWorks

Масса траверсы т=4272,9 кг

Постановка задачи

Уравнения моментной теории оболочек:

Физические соотношения:

$$\begin{split} T_1 &= \frac{Eh}{1 - \mu^2} (\varepsilon_1 + \mu \varepsilon_2); & M_1 = D(\chi_1 + \mu \chi_2); \\ T_2 &= \frac{Eh}{1 - \mu^2} (\varepsilon_2 + \mu \varepsilon_1); & M_2 = D(\chi_2 + \mu \chi_1); \\ T_{12} &= \frac{Eh}{2(1 + \mu)} \gamma; & M_{12} = D(1 - \mu) \chi_{12}; \end{split}$$

Уравнения равновесия:

$$Q_{1} = \frac{1}{R_{1}} \frac{\partial M_{1}}{\partial \theta} + \frac{M_{1} - M_{2}}{r} \cos \theta + \frac{\partial M_{12}}{r \partial \varphi}$$

$$Q_{2} = \frac{\partial M_{2}}{r \partial \varphi} + \frac{\partial M_{12}}{R_{1} \partial \theta} + 2M_{12} \frac{\cos \theta}{r}$$

$$\frac{1}{R_{1}} \frac{\partial T_{1}}{\partial \theta} + \frac{T_{1} - T_{2}}{r} \cos \theta + \frac{\partial T_{12}}{r \partial \varphi} - \frac{Q_{1}}{R_{1}} + P_{\theta} = 0$$

$$\frac{1}{r} \frac{\partial T_{2}}{\partial \varphi} + \frac{1}{R_{1}} \frac{\partial T_{12}}{\partial \theta} + \frac{2T_{12}}{r} \cos \theta - \frac{Q_{2}}{R_{1}} + P_{\varphi} = 0$$

$$\frac{T_{1}}{R_{1}} + \frac{T_{2}}{R_{2}} + \frac{1}{R_{1}} \frac{\partial Q_{1}}{\partial \theta} + \frac{Q_{1}}{r} \cos \theta = P_{n}$$

Геометрические соотношения:

$$\begin{split} \varepsilon_{1z} &= \varepsilon_1 + \chi_1 z; \quad \varepsilon_{2z} = \varepsilon_2 + \chi_2 z; \quad \gamma_z = \gamma + 2\chi_{12} z; \\ \varepsilon_1 &= \frac{1}{R_1} \left(\frac{\partial u}{\partial \theta} + w \right); \quad \varepsilon_2 = \frac{1}{r} \frac{\partial v}{\partial \varphi} + \frac{u}{r} \cos \theta + \frac{w}{R_2}; \\ \gamma &= \frac{1}{r} \frac{\partial u}{\partial \varphi} + \frac{1}{R_1} \frac{\partial v}{\partial \theta} - \frac{v}{r} \cos \theta; \\ \vartheta_1 &= \frac{1}{R_1} \left(\frac{\partial w}{\partial \theta} - u \right); \quad \vartheta_2 = \frac{\partial w}{r \partial \varphi} - \frac{v}{R_2}; \\ \chi_1 &= \frac{1}{R_1} \frac{\partial \vartheta_1}{\partial \theta}; \quad \chi_2 = \frac{1}{r} \frac{\partial \vartheta_2}{\partial \varphi} + \frac{\vartheta_1}{r} \cos \theta; \\ \chi_{12} &= \frac{1}{2} \left(\frac{1}{r} \frac{\partial \vartheta_1}{\partial \varphi} + \frac{1}{R_1} \frac{\partial \vartheta_2}{\partial \theta} - \frac{\vartheta_2}{r} \cos \theta \right). \end{split}$$

Таблица 1 – Физико-механические свойства материала

ГОСТ 380-2005						
Марка сплава	Плотность ρ (кг/м ³)	Модуль Юнга Е (ГПа)	Предел текучести (МПа)	Коэффициент Пуассона v		
Ст3сп	7850	200	250	0,3		

3 вида нагрузки: 1. Весовая нагрузка 30000 Н; 2. Комбинация весовой нагрузки и усилий резания в положительном направлении осей Ох и Оу; 3. Комбинация весовой нагрузки и усилий резания в отрицательном направлении осей Ох и Оу.

Разработка расчетной модели

Метод решения: метод конечных элементов Основная система линейных алгебраических уравнений МКЭ: **KU=F**, где **K** - матрица жесткости системы, **U** - вектор

узловых перемещений, **F** - вектор внешних сил.

Рисунок 5 – Конечный элемент SHELL181

Рисунок 6 – Конечно-элементная модель

Обоснование метода решения

Таблица 2 – Исследование сеточной сходимости

Решения		Результат, (мм)	Расхождение с аналити- ческим решением, (%)	
Ан	алитическое решение	16,018	-	
	56 элементов		$\delta = \frac{16,018 - 14,7}{100\%} \cdot 100\%$	
1	(сетка 8×7)	14,7	16,018	
	(рис.16)		= 8,22	
2	90 элементов	15.3	4,48	
	(сетка 10×9)	15,5		
3	195 элементов	15 50	2,67	
	(сетка 15×13)	15,57		
4	750 элементов	15.02	0,6	
	(сетка 30×25)	13,72		
5	2100 элементов		0,0062	
	(сетка 50×42)	16,017		
	(рис.17)			

Рисунок 9 – Верификация по собственным частотам

1. Д.В. Вайнберг и Е.Д. Вайнберг. Расчёт пластин. Киев, 1970.

Верификация конечно-элементной модели

Таблица 3 – Сравнение частот без закреплений			
	Оболочечная	Трехмерная	
1-ая частота (Гц)	44,121	55,392	
2-ая частота (Гц)	78,12	85,267	
3-ая частота (Гц)	82,355	108,267	
4-ая частота (Гц)	117,9	128,65	

Intal Deformation

Таблица 4 – Сравнение частот с учетом граничных условий

	Оболочечная	Трехмерная
1-ая частота (Гц)	130,12	112,2
2-ая частота (Гц)	188,14	143,78
3-ая частота (Гц)	193,36	193,73
4-ая частота (Гц)	226,08	201,54

Рисунок 10 – Формы колебаний без закреплений

Варианты нагружения

Анализ напряжений

Рисунок 15 – Напряжения при действии весовой нагрузки

Рисунок 16 – Напряжения при действии комбинации весовой нагрузки и усилий резания в положительном направлении осей Ох и Оу

Рисунок 17 – Напряжения при действии комбинации весовой нагрузки и усилий резания в отрицательном направлении осей Ох и Оу

Анализ перемещений траверсы при действии весовой нагрузки Total Calorentee Tape: Total Deferroe Unit mm Time: 1 24.06.2012 0.25 Tutal Deformation Type: Tatal Deform Unit: mm Tene: 1 25.08.2023 19.53 8.040221 Ma 0.05779 0.091322 0.009872 5.64E221 Ma di mana tama 0.013522 Astrix 0.0168/0 0.0046219 8 812423 0.017973 0.00012165.M 0.013522 2.0010718 0.0045219 2.00017925 Mile

Рисунок 18 – Перемещения при действии весовой нагрузки

Рисунок 19 – Путь распределения перемещений

Рисунок 20 – Путь распределения перемещений

Анализ перемещений траверсы при действии комбинации нагрузки

Рисунок 21 – Картина распределения перемещений при действии комбинации весовой нагрузки и усилий резания в положительном направлении осей Ох и Оу Рисунок 22 – Картина распределения перемещений при действии комбинации весовой нагрузки и усилий резания в отрицательном направлении осей Ох и Оу 11

Параметрический анализ

Рисунок 23 – Выбранные для оптимизации ребра

	A	8	c	D
1	ID	Parameter Name	Value	Unit
2	Input Parameters			
3	🖻 📋 Copy of Static Structural (C1)			
4	ф P2	Surface Body Thickness	16	mm 💌
5	(p P3	Surface Body Thickness	16	mm 💌
6	tp P8	Surface Body Thickness	16	mm 💌
7	(p P9)	Surface Body Thickness	16	mm 💌
8	(p P10	Surface Body Thickness	16	mm 💌
9	P11	Surface Body Thickness	16	esm 💌
10	\$ P12	Surface Body Thickness	16	mm 💌
	1 Tiew input parameter	New name.	New expression	
12	Output Parameters			
13	🖻 📴 Copy of Static Structural (C1)			
14	P7 69	Total Deformation Maximum	0,040221	mm
	D New output parameter		New expression	
15	E Charts			
17	Parameter Parallel Chart 0			

При параметрической анализе было заявлены условия:

- внешние грани должны быть неизменны;
- минимальная масса;
- минимальные толщины выбранных для расчета ребер в диапазоне 16-60 мм;
- значения перемещений в диапазоне 0,005-0,01 мм.

Рисунок 25 – Максимальные перемещения в месте пересечения диагональных ребер

Рисунок 24 – Задание параметров детали

Заключение

- Разработана оболочечная модель траверсы, проведен обзор физико-механических свойств материала.
- Выполнен расчет напряженно-деформированного состояния, в ходе которого выяснилось, что траверса проходит по условиям прочности, но не обладает необходимой жесткостью.
- В ходе параметрического анализа толщин внутренних ребер не удалось понизить значения перемещений и повысить жесткостные характеристики. При условии, что внешние грани остаются неизменными, с данной конфигурацией внутренних ребер получить заявленные результаты невозможно, соответственно, необходимо изменить конструкцию внутренних ребер.