Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Ивановский государственный энергетический университет имени В.И.Ленина»

Кафедра теоретической и прикладной механики

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Анализ динамических процессов в подшипнике качения

Выполнила: студентка гр. 4-33 Травина К.А.

Руководитель: к.т.н., доц. Огурцов Ф.Б.

Иваново 2022

Метод ударных импульсов

Метод ударных импульсов основан на измерении и регистрации механических ударных волн, вызванных столкновением двух тел.

Осциллограммы высокочастотной вибрации подшипников качения в третьоктавной полосе частот:

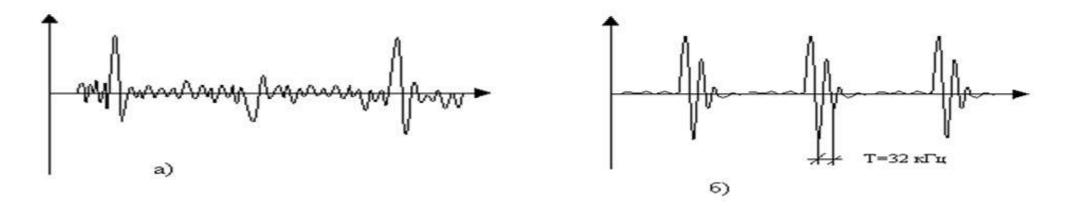
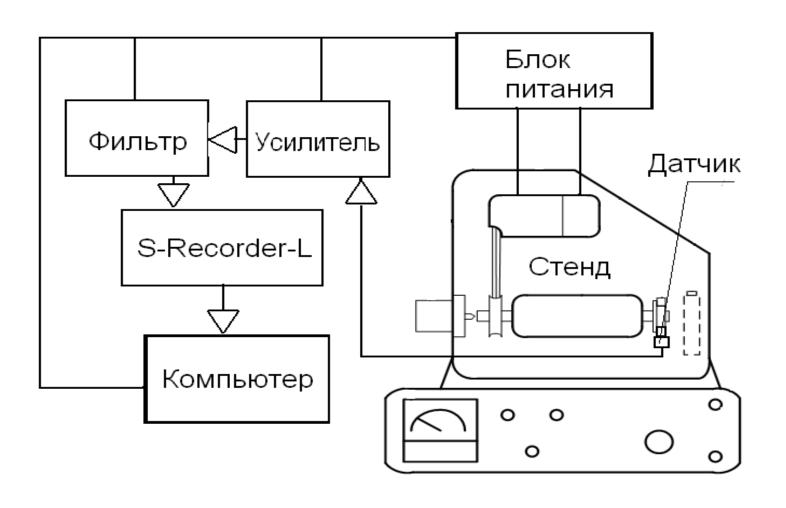


Рис. 1а) ковровые импульсы

Рис. 1б) ударные импульсы


Цель и задачи работы

Цель работы: исследование причин возникновения в подшипнике качения ковровых ударных импульсов.

Задачи:

- проведение статистического анализа дампов высокочастотной вибрации подшипников качения с целью выделения ковровых импульсов и определения статистических параметров частоты их возникновения;
- разработка модели сепаратора подшипника серии 203;
- проведение модального анализа и расчет собственных частот сепаратора для различных вариантов граничных условий в зоне контакта беговых дорожек и тел качения;
- сравнительный анализ полученных результатов.

Структурная схема лабораторного стенда

Внешний вид стенда

Принцип выделения ударных импульсов

10 8 PRI_k 2 0 0 50 100 150 200

 mx_k - массив ударных импульсов PRJ_k - дамп огибающей высокочастотной вибрации

Гистограммы плотности распределения

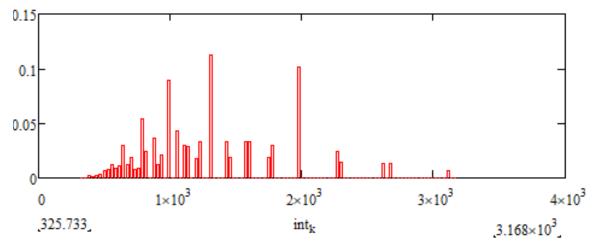


Рис. 4 Гистограмма плотности распределения для смазанного подшипника

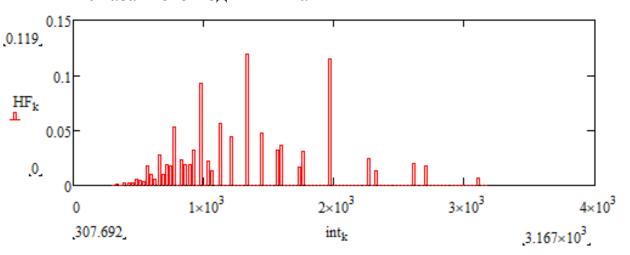


Рис. 5 Гистограмма плотности распределения для несмазанного подшипника

Частоты появления ударных импульсов

Таблица 1 - Частота появления ударных импульсов на подшипниках разной смазки

Частота появления ударных импульсов на несмазанном подшипнике, Гц	Частота появления ударных импульсов на несмазанном подшипнике, Гц
1. 570,32	1. 557,74
2. 657,87	2. 644,74
3. 774,59	3. 789,74
4. 978,86	4. 992,75
5. 1329	5. 1311,8
6. 1971	6. 1978

Разработка модели сепаратора подшипника

Таблица 2 – Размеры сепаратора

Параметр	Размер, мм
Наружный диаметр (наружное кольцо), D	40
Внутренний диаметр (наружное кольцо), D2	33,5
Ширина, В	12
Диаметр шарика, dш	7,14
Наружный диаметр (внутреннее кольцо), d2	23,9
Внутренний диаметр (внутреннее кольцо), d	17
Диаметр центровой окружности, D0	28,5
Диаметр по дну желоба (наружное кольцо), D1	35,64
Диаметр по дну желоба (внутреннее кольцо), d1	21,36
Радиус желоба, R	3,6771

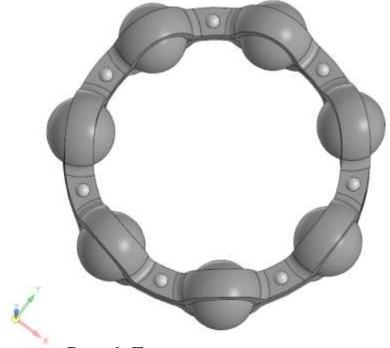


Рис. 6 Готовая модель сепаратора

Верификация сетки

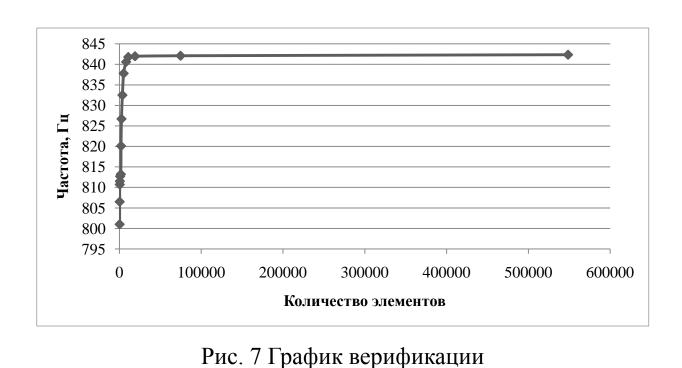


Рис. 8 Конечно-элементная сетка

Z

40704 740 604

Стабильные показания напряжений начинается в интервале от 10724-548624 элементов. Исходя из этих данных была выбрана сетка, которая имеет 10724 элемент, при данной сетке размер элемента равен 0,66 мм.

Граничные условия

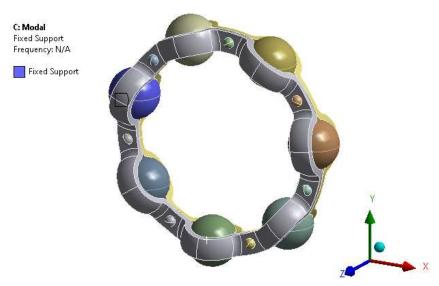


Рис. 9 Первое граничное условие

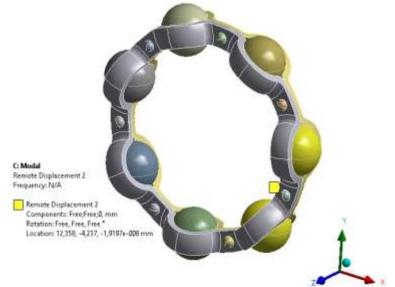


Рис. 11 Третье граничное условие

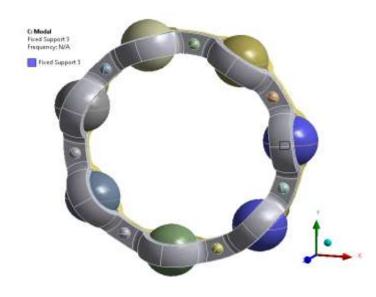


Рис. 10 Второе граничное условие

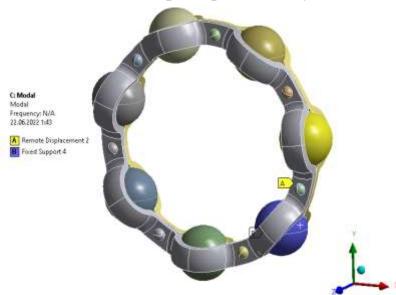
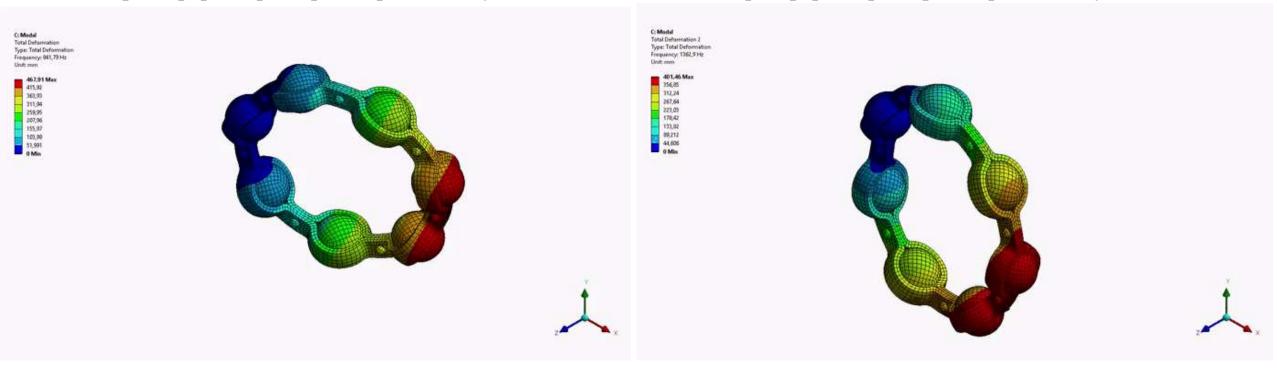



Рис. 12 Четвертое граничное условие

Собственные частоты и формы колебаний

Первая форма при первом граничном условии

Вторая форма при первом граничном условии

Собственные частоты сепаратора при первом граничном условии:

- 1) 841,79 Гц
- 2) 1362,9 Гц
- 3) 1697,3 Гц

Сравнительный анализ результатов

Частота появления ударных импульсов, Гц	Собственные частоты сепаратора, Гц
557,74	518,5 (3-е граничное условие)
657,87	-
774,59	-
978,86	-
1329	1362,9 (1-ое граничные условие) 1365,8 (4-ое граничное условие)
1971	_

Заключение

В ходе работы были выполнены следующие задачи:

- -обработаны результаты эксперимента и определены статистические характеристики ударных импульсов;
- -разработана модель сепаратора подшипника качения;
- -определены собственные частоты сепаратора при различных граничных условиях;
- -проведен сравнительный анализ результатов, в ходе которого установлено, что существует корреляция между собственными частотами при некоторых граничных условиях и частотами возникновения ударных импульсов.